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Abstract

For a suitably chosen metric � for the topology of weak convergence in the space of prior distributions on the shift parameter
of a compact Gaussian shift experiment, the posterior distribution (induced by a full support prior) of the shift parameter given
independent and identically distributed observations from the experiment is uniformly (in the shift parameter) L1 consistent in �.
The corresponding posterior mean is uniformly L1 consistent in the norm on the parameter space. �-distance between the posterior
mean (induced by a full support hyperprior) of the prior (i.e., mixing) distribution given independent and identically distributed
observations from the mixture experiment and the empirical distribution of the parameter sequence in the product experiment [the
mixing distribution] goes to zero in L1 of the product [mixture] experiment, uniformly in parameter sequences [mixing distributions].
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The objective of this paper is to examine the asymptotic behavior of various posterior quantities in the Gaussian shift
experiment. Specifically, we consider the posterior mean and distribution of the shift parameter given (conditionally)
independent and identically distributed (iid hereafter) observations from the experiment, and the (hyperprior induced)
posterior mean of the prior (i.e., mixing) distribution given (again, conditionally) iid observations from the mixture of
the experiment. Restricting to a compact sub-experiment, we obtain uniform L1 consistency of these quantities (in a
number of different but related models for appropriate targets), as corollaries to the following technical result: in L1
of the product of mixtures model, the probability of a Kullback–Leibler neighborhood of the empirical distribution of
the mixing sequence, calculated under the (hyperprior induced) posterior distribution of the prior, converges to one,
uniformly over mixing sequences satisfying a hyperprior related condition on their empirical distributions.

The results outlined above are best understood within a hierarchical Bayes model we present in the next paragraph.
In the remainder of this paragraph, we summarize the notational conventions used in this paper. To denote the integral
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of a function f with respect to (wrt hereafter) a measure �, we interchangeably use the left operator notation �(f ) (or
even �f ) and the integral notation

∫
f d� with the dummy variable of integration sometimes (partially) displayed.

Probabilities are always identified with their induced expectations; consistent with that, sets are identified with their
indicator functions. The set-theoretic complement of a set A is denoted by Ac. For a measurable mapping X on a
probability space (., ., P ), PX−1 denotes the induced probability measure on the range space; the n-fold measure
theoretic product of P on the product space is denoted by P n. The notation a := b means that a and b are equal by
definition. R stands for the real line.

Let � be a Polish space (endowed with its Borel �-algebra) and {P� : � ∈ �} an experiment on a sample space
(X,F) such that � �→ P�(A) is measurable ∀ A ∈ F. Let � denote the set of all prior distributions (Borel probabilities)
on � and �x the posterior distribution of � given x := (x1, . . . , xn) when � ∼ � ∈ � and, given �, x ∼ P n

� , i.e.,
(x1, . . . , xn) are iid observations from the distribution P�. For � ∈ � and A ∈ F, let P�(A) := ∫

P�(A) d�(�),
so that the experiment {P� : � ∈ �}, called the mixture (of the) experiment ({P� : � ∈ �}) in the sequel, is the
marginal experiment in the Bayes model when � ∼ � and, given �, x ∼ P�. Let 	x denote the posterior distribution
of � given x := (x1, . . . , xn) when � ∼ 	 (a hyperprior on �) and, given �, x ∼ P n

� (the so-called Bayes empirical

Bayes model). Let 	̂(B) := ∫
� �(B) d	x(�); 	̂ is called the (hyperprior induced) posterior mean of the prior. For

� := (�1, . . . , �n) ∈ �n, the n-fold Cartesian product of �, let P� denote the product measure ×n

=1P�
 (the so-called

compound model), and let Gn := n−1∑n

=1��
 (∈ �) denote the empirical distribution (on �) of the parameter sequence

�, where �� denotes the unit point mass at �. Similarly, for � := (�1, . . . ,�n) ∈ �n, the n-fold Cartesian product of

�, let P� denote the product measure ×n

=1P�
 , and let �̄ := n−1∑n


=1 �
 denote the empirical distribution (on �)
of the mixing sequence �.

By compounding the mixture model, i.e., considering �, we are able to treat three different models — the Bayes
model, the Bayes empirical Bayes model, and the Bayes compound model — as sub-models of our hierarchical Bayes
model. Note that a similar hierarchical structure was considered by Datta (1991a), but he neither considered the Bayes
model nor compounded the mixture model (and as a consequence had to handle the Bayes empirical Bayes model
separately from the Bayes compound model). At the risk of belaboring the obvious, we would note that our sole
objective behind creating this edifice, the compound mixture model sitting at the top of the hierarchical Bayes model,
is to deal with the various sub-models of statistical importance described above with minimal effort. (That is not to say
that the compound mixture model is devoid of any statistical importance, but it has not been studied in the literature
and is a straightforward extension of the compounding idea to the mixture experiment.)

Let {P� : � ∈ H } be the Gaussian shift experiment (in the sense of LeCam, 1986), where H is a real separable Hilbert
space, with p� denoting a density of P� wrt P0 := �, where 0 is the origin of H. (We present a technical summary of
the features of the Gaussian shift experiment necessary for this paper in Section 2. For references to the vast literature
on the properties, examples, and applications of the Gaussian shift experiment, see Majumdar, 1996b, Section 2.) Note
that for the Gaussian shift experiment, � �→ P� is continuous in the maximum variation norm (LeCam, 1986, p. 158),
implying that ∀ A ∈ F, � �→ P�(A) is continuous, consequently Borel measuarble. Let � be a norm compact subset
of H and let p� denote a density of P� wrt �. Let I
(�) := P
(ln(p
/p�)) denote the Kullback–Leibler divergence
between � and 
 in �. For � > 0, let V�(
) := {� ∈ � : I
(�) < �} denote a Kullback–Leibler neighborhood of 
.
Our main result (Theorem 3.1) asserts uniform (in � such that �̄ ∈ S	) convergence of 	x((V�(�̄))c) to 0 in L1(P�),
where S	 is the smallest closed subset of � of 	 measure 1, the so-called topological support of 	 (see Majumdar,
1992).

For f ∈ Lq(�), let ‖f ‖q denote its Lq(�) norm. Proposition 3.1 shows that �(�, 
) := ‖p� − p
‖1 defines a

metric for weak convergence in �. Corollary 3.1 asserts uniform (in � such that �̄ ∈ S	) convergence of �(	̂, �̄)

to 0 in L1(P�). Corollary 3.2 asserts consistency of the posterior distribution — uniform (in � ∈ �) convergence of
�(�x, ��) to 0 in L1(P

n
� ), provided that S� =�, in which case ‖�̂−�‖ → 0 in L1(P

n
� ), uniformly in � ∈ �, where the

posterior mean �̂ of � is defined as the Pettis integral of identity wrt �x (Corollary 3.3). Corollary 3.4 obtains L1(P�)

convergence of �(	̂, Gn) to 0, uniformly in � ∈ �n, if the hyperprior 	 satisfies S	 = �, in which case �(	̂, �) → 0
in L1(P

n
�), uniformly in � ∈ � (Corollary 3.5).

Posterior consistency results obtained in Corollaries 3.2, 3.3, and 3.5 can trace their roots back to Doob (1948),
who considered a.s. asymptotic behavior. Almost sure posterior consistency in various models, including examples of
inconsistency, has been extensively discussed by Diaconis and Freedman (1990, 1986a, 1986b). We consider the L1
behavior primarily because of the applications of some of these consistency results to compound decision problems
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