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a b s t r a c t

Spline smoothing is a popular technique for curve fitting, in which selection of the

smoothing parameter is crucial. Many methods such as Mallows’ Cp, generalized

maximum likelihood (GML), and the extended exponential (EE) criterion have been

proposed to select this parameter. Although Cp is shown to be asymptotically optimal, it

is usually outperformed by other selection criteria for small to moderate sample sizes

due to its high variability. On the other hand, GML and EE are more stable than Cp, but

they do not possess the same asymptotic optimality as Cp. Instead of selecting this

smoothing parameter directly using Cp, we propose to select among a small class of

selection criteria based on Stein’s unbiased risk estimate (SURE). Due to the selection

effect, the spline estimate obtained from a criterion in this class is nonlinear. Thus, the

effective degrees of freedom in SURE contains an adjustment term in addition to the

trace of the smoothing matrix, which cannot be ignored in small to moderate sample

sizes. The resulting criterion, which we call adaptive Cp, is shown to have an analytic

expression, and hence can be efficiently computed. Moreover, adaptive Cp is not only

demonstrated to be superior and more stable than commonly used selection criteria in a

simulation study, but also shown to possess the same asymptotic optimality as Cp.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Consider noisy data Y � ðY1, . . . ,YnÞu observed at design points t1,y,tn according to the following nonparametric
regression model:

Yi ¼ f ðtiÞþeðtiÞ; i¼ 1, . . . ,n, ð1Þ

where f ð�Þ is an unknown function of interest and e� ðeðt1Þ, . . . ,eðtnÞÞu�Nð0,s2IÞ are errors.
Many approaches such as kernel smoothing (Wand and Jones, 1995), local polynomials (Cleveland, 1979), wavelets

(Donoho and Johnstone, 1994), regression splines (Wand, 2000), and smoothing splines (Craven and Wahba, 1979) have
been proposed for estimating f ð�Þ. Some asymptotic properties of these approaches can also be found in Stone (1977, 1980,
1982), Wahba (1990), and Eubank (1999). In this article, we concentrate on the smoothing spline approach, where the
estimate of f ð�Þ is obtained by minimizing the penalized least squares criterion:

Xn

i ¼ 1

ðyi�gðtiÞÞ
2
þl

Z 1

0
ðg00ðtÞÞ2 dt, ð2Þ
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over fgð�Þ : g is twice differentiable in ½0,1� with
R 1

0 ðguuðtÞÞ
2 dto1g, where lZ0 is a smoothing parameter. The first term in

(2) corresponds to the lack of fit, and the second term in (2) penalizes the roughness of the curve with a smaller (larger) l
corresponding to a wigglier (smoother) estimate of f ð�Þ. For a given l, the smoothing spline estimate is linear and can be
expressed as

f̂ l � ðf̂ lðt1Þ, . . . , f̂ lðtnÞÞu¼ BlY , ð3Þ

where Bl is an n�n matrix depending only on l and {t1,y,tn}. Furthermore, Bl has an eigen-decomposition of the form

Bl ¼UGlUu, ð4Þ

where U does not depend on l, Gl is a diagonal matrix with the ith diagonal element GiðlÞ � ð1þlkiÞ
�1, and

0rk1rk2r � � �rkn are the eigenvalues of WM�1W u. Here W is an n� (n�2) band matrix and M is an (n�2)� (n�2)
symmetric band matrix with the (i,j)th entry given respectively by

wij ¼

d�1
j if i¼ j,

�d�1
j �d�1

jþ1 if i¼ jþ1,

d�1
jþ1 if i¼ jþ2,

0 otherwise,

8>>>>><
>>>>>:

and

mij ¼

ðdjþdjþ1Þ=3 if i¼ j,

dj=6 if i¼ j�1 or i¼ jþ1,

0 otherwise,

8><
>:

where di ¼ tiþ1�ti40; i=1,y,n�1. Note that ki can also be well approximated by p4ði�1:5Þ4=n for iZ3 (Silverman, 1984).
The readers are referred to Silverman (1984), Culpin (1986), and Green and Silverman (1994) for more details on
computing {ki}.

Clearly, it is essential to select an appropriate l in (2). Many selection procedures have been proposed, such as Cp

(Mallows, 1973), generalized cross validation (GCV) (Craven and Wahba, 1979), generalized maximum likelihood (GML)
(Wecker and Ansley, 1983; Wahba, 1985), and the extended exponential (EE) criterion (Kou and Efron, 2002). Although Cp

and GCV tend to perform similarly (Efron, 2001) and have also been shown to be asymptotically optimal under the squared
error loss (Li, 1986), they are known to be unstable for small to moderate sample sizes (e.g., Kohn et al., 1991; Hurvich
et al., 1998; Kou and Efron, 2002; Kou, 2003, 2004). For example, Kou and Efron (2002) and Kou (2003) show by using a
geometric argument that Cp may sometimes select a very oscillatory curve even when the underlying curve is smooth due
to its geometric instability. In fact, it is well known that Cp tends to overfit particularly when the collection of candidate
methods is large (e.g., Birgé and Massart, 2007). In contrast, GML and EE are more stable than Cp, but they do not possess
the same asymptotic optimality as Cp. Some comparisons between GCV and GML can also be found in Reiss and Ogden
(2009). To our knowledge, there does not exist a criterion in the literature that simultaneously achieves finite sample
stability and asymptotic optimality.

Kou (2003) introduced a class of selection criteria fgp,q : pZ1,qZ1g for selecting l in (2):

gp,qðlÞ ¼

Xn

i ¼ 1

cq HiðlÞp=qZ2=q
i �

p

p�1
HiðlÞðp�1Þ=q

� �
if p41,

Xn

i ¼ 1

cq HiðlÞ1=qZ2=q
i �

1

q
logðHiðlÞÞ

� �
if p¼ 1,

8>>>>><
>>>>>:

ð5Þ

where HiðlÞ ¼ lki=ð1þlkiÞ, Z ¼ ðZ1, . . . ,ZnÞu�UuY=s with U defined in (4), and cq �
ffiffiffiffi
p
p

=ð21=qGð1=2þ1=qÞÞ. Here s is
assumed known. When it is unknown, it can be replaced by an estimate (e.g., Efron, 2001). For a given pair of (p,q), the
criterion gp,q selects l̂p,q that minimizes gp,qðlÞ over lZ0. As shown in Kou (2003), the class of (5) includes Cp

(corresponding to p=2 and q=1), GML (corresponding to p=q=1), and EE (corresponding to p=q=1.5) as special cases.
Our goal in this paper is to develop a selection procedure that performs well in small sample sizes while retaining the

large sample optimality. So instead of selecting l directly, our idea is to select among a small subset of candidate criteria
fgp,q : pZ1, qZ1g based on Stein’s (1981) unbiased risk estimate, from which we obtain the estimated smoothing
parameter l̂ p̂ ,q̂ according to the selected criterion. Note that the estimate of f ¼ ðf ðt1Þ, . . . ,f ðtnÞÞu obtained from the criterion
gp,q can be written as

f̂ l̂p,q
¼ ðf̂ l̂p,q

ðt1Þ, . . . , f̂ l̂p,q
ðtnÞÞu¼ Bl̂p,q

Y , ð6Þ

which is nonlinear because of the selection effect, making Bl̂p,q
depend on Y through l̂p,q. Consequently, the commonly

used effective degrees of freedom trðBl̂p,q
Þ (e.g., Buja et al., 1989) which fails to incorporate selection uncertainty, is not

appropriate for criterion gp,q and is subject to adjustment.
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