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Abstract

A general method of tail index estimation for heavy-tailed time series, based on examining the growth rate of the logged sample
second moment of the data was proposed and studied in Meerschaert and Scheffler (1998. A simple robust estimator for the thickness
of heavy tails. J. Statist. Plann. Inference 71, 19-34) as well as Politis (2002. A new approach on estimation of the tail index. C. R.
Acad. Sci. Paris, Ser. 1 335, 279-282). To improve upon the basic estimator, we introduce a scale-invariant estimator that is computed
over subsets of the whole data set. We show that the new estimator, under some stronger conditions on the data, has a polynomial
rate of consistency for the tail index. Empirical studies explore how the new method compares with the Hill, Pickands, and DEdH
estimators.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let X1, ..., X, be an observed stretch of a linear-dependent time series satisfying
Xe=) V;Zij (1)
jez

forallt € Z, where {Z,} is iid (independent and identically distributed) from some continuous distribution F'; the case
where iy ; =0 for j # 0is the special case of { X, } being iid, and is considered in detail throughout Section 2. We assume
that F belongs to D(«), the domain of attraction of an «-stable law; however, the heavy-tail index o is unknown and

must be estimated from the data. In this context, there exist sequences a, and b, such that an’1 (Z:’zl Z; —by) é So,
where S, denotes a generic o-stable law with unspecified scale, location and skewness, and o € (0, 2); it is always true
that we can write a, = n'/*L(n) for some slowly varying function L. If L is either constant or asymptotically tends to
a nonzero constant, we say that F is in the normal domain of attraction, denoted by ND(«). We restrict to the case that
o < 2 to ensure that the variance of the data is always infinite.

Estimators of the tail index are often constructed from extreme order statistics—see Csorgd et al. (1985) for a
general class of such estimators. The well-known Hill estimator H, falls into this class. A challenging problem lies in

* Corresponding author.
E-mail address: politis@math.ucsd.edu (D.N. Politis).

0378-3758/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.jspi.2006.04.002


http://www.elsevier.com/locate/jspi
mailto:politis@math.ucsd.edu

1390 T. McElroy, D.N. Politis / Journal of Statistical Planning and Inference 137 (2007) 1389— 1406

choosing the number of order statistics ¢ to be used in practice; see Embrechts et al. (1997) and the references therein
for a discussion of this topic. The work of Politis (2002) presents an alternative estimation approach that is based on
empirically examining the growth of appropriately chosen diverging statistics. A prime example of such a statistic is
given by the sample variance that diverges to infinity in the absence of a finite second moment. As a matter of fact,
a consistent—albeit with logarithmic rate—tail index estimator can be constructed by simply taking the ratio of the
logarithm of the sample variance to the logarithm of the sample size; see Meerschaert and Scheffler (1998). For a survey
on nonparametric methods for heavy-tailed data, see Meerschaert and Scheffler (2003); these authors also extend their
methodology to heavy-tailed random vectors.

In this paper, a new class of tail index estimators are presented, which are in the same philosophy as the estimators
of Meerschaert and Scheffler (1998) and Politis (2002); in particular, they do not rely on extreme order statistics.
The main estimator is an effort to improve on the convergence rate of the tail index estimator of Meerschaert and
Scheffler (1998), hereafter referred to as the MS statistic. Our approach is simple and intuitive, and can also be
generalized to rate estimation settings other than the heavy-tail problem. We also propose some ways to improve upon
the basic form of the new estimators, and give some finite-sample simulation results. Section 2 covers the theoretical
results that establish the asymptotics of the tail index estimator, while Section 3 deals with the more practical issues
of how to conduct inference for «, and presents the result of several simulation studies. All proofs are placed in the
Appendix.

2. Theory
2.1. Motivation for the new approach

The theory developed in this section motivates the construction of the tail index estimators that we explore empirically
in Section 3. In order to facilitate simple proofs, the results in this section are presented for iid data, i.e., the case y ; =0
for j # 01in (1). Some notations that are consistently used in this paper: E denotes the expectation operator, whereas
D is the variance operator (D for dispersion). By the notation D[A, B], we denote the covariance between variables A
and B. Also, when we write a random variable without a subscript, we indicate a common version.

Let us define the sum of squares process S, (X?) = > 1X12- It is well-known (see, for example Theorem 4.2 of
Davis and Resnick (1985) for the M A(oc0) case) that S, (X2) diverges (when o < 2) at rate a,zl, i.e., the normalized partial
sums of squares U, =a,; 28,(X?%) converge in distribution to a nondegenerate random variable. Since a,, = n'/*L(n),
the rate of divergence of S, (X?) may give crucial information about «. So define { = 1/& and M = L?, and consider
the identity

log $,(X?) =2logn + log M(n) + &, ()
where the random variables
&0 = log(a; > S, (X?))

can be thought of as “residuals” in a regression of log S,, (X?) on log . This is the basic motivation behind the regression
estimator of Politis (2002), as well as the MS statistic:

VS = log*5,(X2)/ (2 logn).

Here logTx = max{logx, 0}. This differs from the statistic defined by Meerschaert and Scheffler (1998) in that the
sample second moments rather than the sample variance is computed; the centering makes no difference to asymptotics
when o < 2. In this paper we shall use log rather than log™; the latter function has the advantage of disregarding the
behavior of X2 near zero, whose negative values of log X2 we essentially explore. However, the logarithm allows for
the intuitive decomposition given by (2). As suggested in Meerschaert and Scheffler (1998), these estimators can be
easily adapted to handle the case that « >2 by computing fourth or six sample moments; thus, we define

{BAST — 1og S, (X?")/(2r logn),

where the integer r is taken sufficiently large such that the 2rth moment of the data’s distribution does not exist.
The notation denotes a “basic” estimator, dependent on a user-defined integer r. The following result is similar to
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