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Abstract

In this paper we consider new families of residuals and influential measures, under the assumption of multinomial sampling, for
loglinear models. These new families are based on ¢-divergence test statistic. The asymptotic normality of the standardized residuals
is obtained as well as the relation of the new family of influential measures with the appropriate Cook’s distance in this context. The
expression of the new family of residuals is obtained in two important problems: independence and symmetry in two-dimensional
contingence tables. A numerical example illustrates the results obtained.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction
Consider a sample Y7, Y2, ..., Y, of size n € N with realizations from % = {1, 2, ..., M} and independently and

identically distributed (i.i.d.) according to the probability distribution p(6g) = (p1(0o), - .., Pm (00))T. This distribution
is assumed to be unknown, but belongs to a known family

2{p® =10, ... pu @) : 0 6}

of distributions on % with @ ¢ RM0 (Mo < M — 1). Here and in the sequel, “T” denotes the vector or matrix transpose.

In other words, the true value 6y of parameter 6 = (01, ..., QMO)T € 0O is assumed to be unknown. We denote
p=(DPi..... pm)T where
n
pi=Nj/n and N;=> I, j=1,....M. (1)

i=1
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The statistic (N, ..., Ny) is obviously sufficient for the statistical model under consideration and is multinomially
distributed; that is,
n!
Pr(Ny=ni,.... Ny =ny) = ————p1(00)"" x - x py(0o)"", )
nyl---ny!
for integers ny, ...,ny >0 such thatny + - - - +ny =n.
In what follows, we assume that p(60) belongs to the general class of loglinear models. That is, we assume

M
pi(0) =exp(w!0) /Z expwl0), i=1,....M, 3)
v=1
where w; =(wj1, ..., w,-MO)T, i=1,..., M.Wedenoteby W=(wy, ..., wM)T the M x My matrix, which is assumed to
have full column rank My < M — 1 and the columns linearly independent of the M x 1 column vector Jy; =(1, ..., 1)T.
We denote by X the matrix defined by
X=Uu.W. 4)

Cressie and Pardo (2000), assuming ¢” (1) > 0, considered the following minimum ¢-divergence estimator in log-
linear models:

§¢ =arg 5213 D¢(ﬁ,p(0)), (5)
where
M 5,
Dy(p,p(0) = (0 / > 6
+(P.p(0)) ; P <p.,.(o) (6)

is the ¢-divergence measure defined simultaneously by Ali and Silvey (1966) and Csiszar (1967). We shall assume
that ¢ € @*, where @* is the class of all convex functions ¢(x), x > 0, such that at x = 1, ¢(1) =0, and at x = 0,
0¢(0/0) =0 and 0 (p/0) = lim,_, o Pp(u)/u. For every ¢ € ®*, that is differentiable at x = 1, the function

Y(x) = ¢p(x) — ¢ (Hx = 1)

also belongs to @*. Then we have Dy, (p. p(0)) =Dy (p. p(0)), and y has the additional property that /' (1) =0. Because
the two divergence measures are equivalent, we can consider the set @* to be equivalent to the set ® = &* N {¢ :
¢'(1) = 0}. In what follows, we give our theoretical results for ¢ € @ but we often apply them to choices of functions
in @*. A complete study about ¢-divergence measures can be seen in Vajda (1989), Pardo (2006) and some interesting
results in loglinear models on the basis of the ¢-divergence measures can be seen in Cressie and Pardo (2000, 2002b),
Cressie et al. (2003) and Pardo and Pardo (2003, 2004).

Cressie and Pardo (2000) established, assuming that ¢” (1) > 0, that the minimum ¢-divergence estimator for log-
linear models, defined in (5), has the property that

-~ L —
V(0 = 00) =5 N (Oatyt, Wy W) )

where WT'E,,\W is the Fisher information matrix associated with the loglinear model defined in (3) andX, g, =

diag(p(00)) — p(00)p(60) ", which diag(p(0o)) defined by diag(p(60)) = diag(p1(60), ..., pa(60)). The asymptotic
variance—covariance matrix of 64 can be estimated by

— = 1 —1
Cov(0y) = ;(WTZP@)W) . (8)

It is well known that the maximum likelihood estimator (MLE) for loglinear models, see Cressie and Pardo (2000),
is obtained from (5) if we consider qb()Q = x log x — x + 1, i.e., the Kullback—Leibler divergence measure. In the
following, the MLE will be denoted by 6.
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