

Available online at www.sciencedirect.com

SCIENCE () DIRECT

Journal of Statistical Planning and Inference 136 (2006) 3268-3280 journal of statistical planning and inference

www.elsevier.com/locate/jspi

Orthogonal arrays of strength 3 and small run sizes

Andries E. Brouwer*, Arjeh M. Cohen, Man V.M. Nguyen

Department of Mathematics, Technical University of Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Received 22 March 2004; received in revised form 5 December 2004; accepted 10 December 2004 Available online 14 March 2005

Abstract

All mixed (or asymmetric) orthogonal arrays of strength 3 with run size at most 64 are determined. © 2005 Published by Elsevier B.V.

Keywords: Fractional factorial designs; Orthogonal arrays

1. Introduction

In this paper we study mixed orthogonal arrays of strength 3. Let s_1, s_2, \ldots, s_k be a list of natural numbers, and for each *i*, let Q_{s_i} be a set of size s_i . For natural numbers *t*, *N*, a multiset \mathscr{F} of size *N* whose elements are from $Q_{s_1} \times Q_{s_2} \times \cdots \times Q_{s_k}$ is called an *orthogonal array of strength t*, notation $OA(N, s_1, s_2, \ldots, s_k, t)$, if $t \leq k$, and, for every index set $I \subseteq \{1, \ldots, k\}$ of size at most *t*, each row of $\prod_{i \in I} Q_{s_i}$ occurs equally often in the projection of \mathscr{F} onto the coordinates indexed by *I*.

We refer to the elements of \mathscr{F} as *runs*, so *N* is the number of runs of \mathscr{F} , also called its *run size*. The coordinates of $Q_{s_1} \times Q_{s_2} \times \cdots \times Q_{s_k}$ are called *factors*, so *k* is the number of factors. Moreover, s_i is called the *level* of the factor *i*. Instead of s_1, s_2, s_3, \ldots we also write $2^a \cdot 3^b \cdot 4^c \ldots$, where the exponents *a*, *b*, *c*, \ldots indicate the number of factors at level 2, 3, 4, etc. An orthogonal array is called *trivial* if it contains each element of $Q_{s_1} \times Q_{s_2} \times \cdots \times Q_{s_k}$ the same number of times.

Orthogonal arrays of strength 2 have been studied extensively. In this paper, we study the case of strength t = 3. We restrict ourselves mainly to $N \leq 64$.

^{*} Corresponding author.

E-mail addresses: aeb@cwi.nl, aeb@win.tue.nl (A.E. Brouwer).

^{0378-3758/\$ -} see front matter © 2005 Published by Elsevier B.V. doi:10.1016/j.jspi.2004.12.012

Theorem 1. For every set of parameters $N, s_1, s_2, ..., s_k$, t with t = 3 and $N \le 64$ such that an orthogonal array $OA(N, s_1, s_2, ..., s_k, t)$ exists, we construct at least one such array. More precisely, if k = 3 such an array is trivial, and if k > 3 a construction is indicated in Table 1.

Of course the existence of $OA(N, s_1, s_2, ..., s_k, t)$ does not depend on the ordering of the parameters s_j , and we can take them in non-decreasing order if we wish.

N	Levels	Existence	Construction	Nonexistence
8	2^a	$a \leqslant 4$	(H)	
16	$2^a \cdot 4$	$a \leq 3$	(M)	
16	2^a	$a \leqslant 8$	(H)	
24	$2^a \cdot 6$	$a \leqslant 3$	(M)	
24	$2^a \cdot 3$	$a \leqslant 4$	(M)	a = 5
24	2^a	$a \leq 12$	(H)	
27	3^b	$b \leqslant 4$	(L)	b = 5
32	$2^a \cdot 8$	$a \leqslant 3$	(M)	
32	$2^a \cdot 4^2$	$a \leqslant 4$	(AD)	
32	$2^a \cdot 4$	$a \leqslant 7$	(M)	
32	2^a	$a \leq 16$	(H)	
36	$2^2 \cdot 3^2$		(T)	
40	$2^{a} \cdot 10$	$a \leq 3$	(M)	
40	$2^a \cdot 5$	$a \leqslant 6$	(X ₁)	a = 7
40	2^a	$a \leq 20$	(H)	
48	$2^{a} \cdot 12$	$a \leq 3$	(M)	
48	$2^a \cdot 4 \cdot 6$	$a \leq 2$	(M)	a = 3
48	$2^a \cdot 6$	$a \leqslant 7$	(M)	
48	$2^a \cdot 3 \cdot 4$	$a \leqslant 4$	(X ₂)	a = 5
48	$2^a \cdot 4$	$a \leq 11$	(M)	
48	$2^a \cdot 3$	$a \leqslant 9$	(X ₃)	a = 10
48	2^a	$a \leq 24$	(H)	
54	$3^b \cdot 6$	$b \leq 3$	(M)	b = 4
54	$2^a \cdot 3^b$	$a \leq 1, b \leq 5$	(X ₄)	(a, b) = (0, 6)
56	$2^{a} \cdot 14$	$a \leq 3$	(M)	
56	$2^a \cdot 7$	$a \leqslant 6$	(J)	a = 7
56	2^a	$a \leq 28$	(H)	
60	$2^2 \cdot 3 \cdot 5$		(T)	
64	$2^{a} \cdot 16$	$a \leq 3$	(M)	
64	$2^a \cdot 4 \cdot 8$	$a \leqslant 4$	(M)	
64	$2^a \cdot 8$	$a \leqslant 7$	(M)	
64	4 ^{<i>c</i>}	$c \leqslant 6$	(L)	
64	$2^{a} \cdot 4^{5}$	$a \leq 2$	(S)	a = 3
64	$2^a \cdot 4^4$	$a \leq 6$	(X ₅)	
64	$2^{a} \cdot 4^{3}$	$a \leq 8$	(S)	a = 9
64	$2^a \cdot 4^2$	<i>a</i> ≤ 12	(AD)	
64	$2^a \cdot 4$	<i>a</i> ≤15	(M)	
64	2^a	$a \leq 32$	(H)	

Table 1 Parameters of orthogonal arrays of strength 3 with $N \leq 64$

Download English Version:

https://daneshyari.com/en/article/1150321

Download Persian Version:

https://daneshyari.com/article/1150321

Daneshyari.com