Journal of Statistical Planning and

Orthogonal arrays of strength 3 and small run sizes

Andries E. Brouwer*, Arjeh M. Cohen, Man V.M. Nguyen
Department of Mathematics, Technical University of Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Received 22 March 2004; received in revised form 5 December 2004; accepted 10 December 2004
Available online 14 March 2005

Abstract

All mixed (or asymmetric) orthogonal arrays of strength 3 with run size at most 64 are determined. © 2005 Published by Elsevier B.V.

Keywords: Fractional factorial designs; Orthogonal arrays

1. Introduction

In this paper we study mixed orthogonal arrays of strength 3 . Let $s_{1}, s_{2}, \ldots, s_{k}$ be a list of natural numbers, and for each i, let $Q_{s_{i}}$ be a set of size s_{i}. For natural numbers t, N, a multiset \mathscr{F} of size N whose elements are from $Q_{s_{1}} \times Q_{s_{2}} \times \cdots \times Q_{s_{k}}$ is called an orthogonal array of strength t, notation $O A\left(N, s_{1}, s_{2}, \ldots, s_{k}, t\right)$, if $t \leqslant k$, and, for every index set $I \subseteq\{1, \ldots, k\}$ of size at most t, each row of $\prod_{i \in I} Q_{s_{i}}$ occurs equally often in the projection of \mathscr{F} onto the coordinates indexed by I.

We refer to the elements of \mathscr{F} as runs, so N is the number of runs of \mathscr{F}, also called its run size. The coordinates of $Q_{s_{1}} \times Q_{s_{2}} \times \cdots \times Q_{s_{k}}$ are called factors, so k is the number of factors. Moreover, s_{i} is called the level of the factor i. Instead of $s_{1}, s_{2}, s_{3}, \ldots$ we also write $2^{a} \cdot 3^{b} \cdot 4^{c} \ldots$, where the exponents a, b, c, \ldots indicate the number of factors at level $2,3,4$, etc. An orthogonal array is called trivial if it contains each element of $Q_{s_{1}} \times Q_{s_{2}} \times \cdots \times Q_{s_{k}}$ the same number of times.

Orthogonal arrays of strength 2 have been studied extensively. In this paper, we study the case of strength $t=3$. We restrict ourselves mainly to $N \leqslant 64$.

[^0]Theorem 1. For every set of parameters $N, s_{1}, s_{2}, \ldots, s_{k}$, t with $t=3$ and $N \leqslant 64$ such that an orthogonal array $O A\left(N, s_{1}, s_{2}, \ldots, s_{k}, t\right)$ exists, we construct at least one such array. More precisely, if $k=3$ such an array is trivial, and if $k>3$ a construction is indicated in Table 1.

Of course the existence of $O A\left(N, s_{1}, s_{2}, \ldots, s_{k}, t\right)$ does not depend on the ordering of the parameters s_{j}, and we can take them in non-decreasing order if we wish.

Table 1
Parameters of orthogonal arrays of strength 3 with $N \leqslant 64$

N	Levels	Existence	Construction	Nonexistence
8	2^{a}	$a \leqslant 4$	(H)	
16	$2^{a} \cdot 4$	$a \leqslant 3$	(M)	
16	2^{a}	$a \leqslant 8$	(H)	
24	$2^{a} \cdot 6$	$a \leqslant 3$	(M)	
24	$2^{a} \cdot 3$	$a \leqslant 4$	(M)	$a=5$
24	2^{a}	$a \leqslant 12$	(H)	
27	3^{b}	$b \leqslant 4$	(L)	$b=5$
32	$2^{a} \cdot 8$	$a \leqslant 3$	(M)	
32	$2^{a} \cdot 4^{2}$	$a \leqslant 4$	(AD)	
32	$2^{a} \cdot 4$	$a \leqslant 7$	(M)	
32	2^{a}	$a \leqslant 16$	(H)	
36	$2^{2} \cdot 3^{2}$		(T)	
40	$2^{a} \cdot 10$	$a \leqslant 3$	(M)	
40	$2^{a} \cdot 5$	$a \leqslant 6$	(X_{1})	$a=7$
40	2^{a}	$a \leqslant 20$	(H)	
48	$2^{a} \cdot 12$	$a \leqslant 3$	(M)	
48	$2^{a} \cdot 4 \cdot 6$	$a \leqslant 2$	(M)	$a=3$
48	$2^{a} \cdot 6$	$a \leqslant 7$	(M)	
48	$2^{a} \cdot 3 \cdot 4$	$a \leqslant 4$	$\left(\mathrm{X}_{2}\right)$	$a=5$
48	$2^{a} \cdot 4$	$a \leqslant 11$	(M)	
48	$2^{a} \cdot 3$	$a \leqslant 9$	$\left(\mathrm{X}_{3}\right)$	$a=10$
48	2^{a}	$a \leqslant 24$	(H)	
54	$3^{b} \cdot 6$	$b \leqslant 3$	(M)	$b=4$
54	$2^{a} \cdot 3^{b}$	$a \leqslant 1, b \leqslant 5$	(X_{4})	$(a, b)=(0,6)$
56	$2^{a} \cdot 14$	$a \leqslant 3$	(M)	
56	$2^{a} \cdot 7$	$a \leqslant 6$	(J)	$a=7$
56	2^{a}	$a \leqslant 28$	(H)	
60	$2^{2} \cdot 3 \cdot 5$		(T)	
64	$2^{a} \cdot 16$	$a \leqslant 3$	(M)	
64	$2^{a} \cdot 4 \cdot 8$	$a \leqslant 4$	(M)	
64	$2^{a} \cdot 8$	$a \leqslant 7$	(M)	
64	4^{c}	$c \leqslant 6$	(L)	
64	$2^{a} \cdot 4^{5}$	$a \leqslant 2$	(S)	$a=3$
64	$2^{a} \cdot 4^{4}$	$a \leqslant 6$	$\left(\mathrm{X}_{5}\right)$	
64	$2^{a} \cdot 4^{3}$	$a \leqslant 8$	(S)	$a=9$
64	$2^{a} \cdot 4^{2}$	$a \leqslant 12$	(AD)	
64	$2^{a} \cdot 4$	$a \leqslant 15$	(M)	
64	2^{a}	$a \leqslant 32$	(H)	

https://daneshyari.com/en/article/1150321

Download Persian Version:
https://daneshyari.com/article/1150321

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: aeb@cwi.nl, aeb@win.tue.nl (A.E. Brouwer).

