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a b s t r a c t

The main characteristic of a load sharing system is that after the failure of one

component the surviving components have to shoulder extra load and hence are prone

to failure at an earlier time than what is expected under the original model. In others,

the failure of one component may release extra resources to the survivors, thus delaying

the system failure. In this paper we consider such m component systems and some

observation schemes and identifiability issues under them. Then we construct a general

semiparametric multivariate family of distributions which explicitly models this

phenomenon through proportional conditional hazards. We suggest estimates for the

constant of proportionality. We propose a nonparametric test for the hypothesis that

the failures take place independently according to the common distribution against the

alternative hypothesis that the second failure takes place earlier than warranted, study

its properties and illustrate its use.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction, literature survey and summary

Let us consider an m component k-out-of-m system. For 1rkrm, the system continues to function as long
as m�kþ1 components have not failed. The series system ðk¼mÞ and parallel system ðk¼ 1Þ are its special cases.
However, failure of a component may put additional load on the surviving components and hence affect their functioning
and hence the functioning of the system. This may result in stochastic changes in the residual life time of the system.
Following examples show that these changes may either decrease or increase (stochastically) the residual lifetime of the
system.

Daniels (1945) and Rosen (1964) observed that yarns and cables in a bundle fail only when the last fiber (or wire) in the
bundle breaks. A bundle of fibers can be considered as a parallel system subject to a constant tensile load. After a fiber
breaks yarn bundles or untwisted cables tend to spread the stress load uniformly on the remaining unbroken fibers. This
pioneering work dealt with the strength of the bundles rather than with their lifetimes.

Coleman (1958) obtained the mean time to ultimate failure of a bundle of parallel fibers when the number
of fibers becomes large. Birnbaum and Saunders (1958) derived the lifetime distribution of the materials. Phoenix
(1978) showed that the system failure is asymptotically normally distributed as the number of components become
large.
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Gross et al. (1971) observed that a two organ subsystem (e.g., two kidneys) in a human body typically show this
pattern. If a patient gets one of his kidneys removed due to some illness, then the second kidney shows a

higher failure rate. The above authors have developed a survival distribution for such two organ systems. Both failure rates
are assumed to be constant in time. Iterative estimation procedures for the parameters of the survival distribution are
proposed.

Lynch (1999) and Durham and Lynch (2000) studied relationships between the load share rule and the failure rate for
some specified load-share rules.

Singpurwalla (1995), Hollander and Pena (1995), Pena (2006) describe these as dynamic reliability systems. Recently
Kim and Kvam (2004) have shown the need for such models in several other types of situations.

Cramer and Kamps (1996, 2001) have proposed a new model for the joint distributions involved in the analysis of the k-
out-of-m system. The observation scheme is the continuous monitoring scheme, i.e. lifetimes of all the m�kþ1
components which fail till the system fails are observed sequentially. The joint distribution is specified in terms of the
successive conditional distributions of these m�kþ1 ‘sequential order statistics’. Upon a component failure, the working
components are assumed to be, conditionally, given the immediately preceding component failure time z, i.i.d. random
variables with common cdf

Fið�Þ�FiðzÞ

1�FiðzÞ
; 1r irm�kþ1;

where Fi is modelled by FiðtÞ ¼ 1�ð1�FðtÞÞai . The next component failure time, then, is the minimum of the surviving
components. It is clear that given a component failure, this choice will give aif=ð1�FÞ, that is, ai times the original hazard
rate as the hazard rate of the conditional failure time of a surviving component. Under the i.i.d. set up, without changing
the joint distribution in the above manner, this failure rate remains a1f=ð1�FÞ, that of any component working on its own.
Thus the introduction of the unequal parameters ai may be seen to accommodate load sharing.

However, in this generality, as is the case of dynamic reliability models of Singpurwalla (1995), Hollander and Pena
(1995) and Kvam and Pena (2005), it is difficult to obtain workable closed form expressions for the complete joint
distributions, or even for the distribution of the system lifetime.

Kim and Kvam (2004) and Kvam and Pena (2005) consider a k component parallel system. Initially the components
have identical distribution with failure rate rðtÞ. After the failure of the first component the failure rate of k�1 surviving
components changes to g1rðtÞ, for some g140, and so on. They find a nonparametric estimator of the component baseline
cumulative hazard function and discuss its asymptotic distribution. They consider the estimation of parameters gj’s under
monotone load sharing subject to the conditions 1rg1rg2r � � �rgk�1. They also derive a likelihood ratio test for testing
equality of g’s against the alternative that they are monotone.

McCool (2006) modelled the time to failure as a two parameter Weibull distribution. He proposed a test for the
hypothesis that the failure of the first component in a parallel system shortens the life of the remaining components of the
same system.

In all the above examples the failure of the first component adversely affects the system performance. On the other
hand while checking software, detection of a critical fault can help in finding other bugs which are yet undetected.
Drummond et al. (2000) carried out a study in a vertebrate species showing that selective deaths due to food shortage
result in surviving offspring receiving an increased share of an undiminished food supply. They observed littermates of the
domestic rabbit Oryctolagus cuniculus and found that after individual pups died, the total daily milk weight obtained by
the litter continued to be the same. The surviving pups showed greater growth as a result of increase in the milk
consumption. This necessitates considering the models wherein failure of a component increases the survival chances of
the other components.

In this paper we consider k-out-of-m systems. For k¼ 1 this reduces to a parallel system. We study their lifelengths,
identifiability issues and bounds under some observation schemes in Section 2. In Section 3 we propose a conditional
failure rate model which explicitly uses the concept of additional (or decreased) load on the surviving components after
the failure of a component. We also discuss the popular Gumbel (1960) and Freund (1961) models from this point of view.
Section 4 discusses estimation. Section 5 provides a test for the null hypothesis that a component fails without any
additional load on the surviving components against the alternative that there is such an additional load. We also extend
the test to the case of right censored data. Section 6 includes a simulation study and in Section 7 the test is illustrated on
real data.

2. Identifiability under various observation schemes

Let us denote the lifetimes of the m components by random variables U1;U2; . . . ;Um, respectively, and let
Xð1Þ;Xð2Þ; . . . ;XðmÞ denote the corresponding order statistics. The lifetime of a k-out-of-m system is given by the random
variable Y ¼ Xðm�kþ1Þ. If the labels of the failed components are not recorded then the data will consist of only
Xð1Þ;Xð2Þ; . . . ;Xðm�kþ1Þ and the Ui’s will not be observed. The question then is whether the joint distribution of the unordered
lifetimes of the m components ðU1;U2; . . . ;UmÞ is identifiable or not from that of Xð1Þ;Xð2Þ; . . . ;Xðm�kþ1Þ. If the component
lifelength distributions are not identifiable, we propose bounds which can be estimated from the corresponding data.
However, these bounds are more meaningful for a parallel system, i.e., the k¼ 1 case.
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