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The implementation of the Bayesian paradigm to model comparison can be problematic. In
particular, prior distributions on the parameter space of each candidate model require special
care. While it is well known that improper priors cannot be routinely used for Bayesian model
comparison, we claim that also the use of proper conventional priors under eachmodel should
be regarded as suspicious, especially when comparing models having different dimensions.
The basic idea is that priors should not be assigned separately under each model; rather they
should be related across models, in order to acquire some degree of compatibility, and thus
allow fairer and more robust comparisons. In this connection, the intrinsic prior as well as
the expected posterior prior (EPP) methodology represent a useful tool. In this paper we de-
velop a procedure based on EPP to performBayesianmodel comparison for discrete undirected
decomposable graphical models, although our method could be adapted to deal also with di-
rected acyclic graph models. We present two possible approaches. One based on imaginary
data, and one which makes use of a limited number of actual data. The methodology is illus-
trated through the analysis of a 2 × 3 × 4 contingency table.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Model comparison is an important area of statistics. The Bayesian view is especially suited for this purpose, see for instance the
review articles by George (2005) and Berger (2005). However, its implementation can be problematic, especiallywhen comparing
models having different dimensions. In particular, prior distributions on the parameter space of each model, which are required
to compute Bayes factors and posterior model probabilities, need special care, because sensitivity to prior specifications in
Bayesian testing and model comparison is more critical than in Bayesian inference within a single model. In particular, the
use of conventional priors is suspicious for model comparison. The problem goes much deeper than the simple realization that
improper priors cannot be naively used for computing Bayes factors, because arbitrary normalizing constants do not cancel out.
Indeed also proper priors are not free from difficulties when comparing hypotheses of different dimensions, as witnessed by the
celebrated Jeffreys–Lindley paradox (see e.g. Robert, 2001, p. 234). The main difficulty stems from the high sensitivity of Bayes
factors to the specifications of hyperparameters controlling prior-diffuseness. We claim that, when dealing simultaneously with
several models, one cannot elicit priors in isolation conditionally on each single model; rather, one should take a global view
and relate priors across models. This leads us straight into the area of compatible priors, see e.g. Dawid and Lauritzen (2001) and
Consonni and Veronese (2008). In this connection, the intrinsic prior (IP) methodology—Berger and Pericchi (1996) and Moreno
(1997)—and the expected posterior prior (EPP) methodology—Pérez and Berger (2002)—represent a useful tool. The IP and EPP
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methodologies, which are closely related, were both motivated by the need to use objective, typically improper, priors for model
choice. However, they have a wider scope, because they can effectively deal with issues such as compatibility of priors and
robustness of Bayes factors to prior elicitation.

Additionally, they embody a natural tuning coefficient, the training sample size, which represents a valuable communication
device to report a range of plausible values for the Bayes factor (or posterior probability) in the light of the data; see Consonni
and La Rocca (2008) for an application. The EPP methodology is somewhat more flexible in the choice of a particular mixing
distribution (see Section 4.1 for details), and thus we will henceforth embed our discussion within the EPP framework.

In this paper we perform Bayesian model determination for discrete decomposable (undirected) graphical models using the
EPPmethodology. Specifically, Section2 containsbackgroundmaterial ongraphicalmodels andnotation; Section3presentsuseful
results originally developed by Consonni and Massam (2007): an efficient parameterization of discrete decomposable graphical
models, a class of conjugate priors, as well as a reference prior. Sections 4 and 5, with their specific focus on discrete graphical
models, constitute the innovative part of the paper: the former develops a `base-model', as well as an `empirical distribution',
version of expected posterior prior; while the latter presents an EPP-based Bayesian model comparison methodology. Section
6 applies the methodology to a 2 × 3 × 4 contingency table representing the classification of 491 subjects according to three
categorical variables, namely hypertension, obesity, and alcohol intake, with the objective of identifying the most promising
models for the explanation of these data. Finally, Section 7 presents some concluding remarks.

2. Background and notation

We briefly recall some basic facts about undirected graphical models. Let V be a finite set of vertices; and define E to be a
subset of V × V containing unordered pairs {�,�}, � ∈ V , � ∈ V , ���. An undirected graph G is the pair (V , E). An undirected graph
is complete if all pairs of vertices are joined by an edge. For further details, and in particular the notions of decomposable graph
and cliquewe refer to Lauritzen (1996).

For a given ordering C1, ...,Ck of the cliques of a decomposable undirected graph G, we will use the following notation:

Hl =
l⋃

j=1

Cj, l = 1, . . . , k, Sl = Hl−1 ∩ Cl, l = 2, . . . , k, Rl = Cl\Sl, l = 2, . . . , k.

The set Hl is called the l-th history, Sl the l-th separator and Rl the l-th residual. The ordered sequence of the cliques is said to
be perfect if for any l>1 there is an i< l such that Sl ⊆ Ci.

Given a random vector A = (A�, � ∈ V), a graphical model, Markov with respect to an undirected graph G, is a family of joint
probability distributions on A such that A�@A� | AV\{�,�}, for any pair {�, �} /∈ E. We assume A to be a discrete random vector, with
each element A� taking values in the finite setI�. For a given undirected decomposable graph G, we use for simplicity the same
symbol G also to denote a discrete graphical model, Markov with respect to the graph G.

The Cartesian productI= ×�∈VI� defines a table whose generic element

i = (i�, � ∈ V)

is called a cell of the table. Consider N units, and assume that each one can be classified into one and only one of the |I| cells. Let
y(i) be the i-th cell-count; then the collection of cell-counts

y = (y(i), i ∈ I),
∑
i∈I

y(i) = N,

defines a contingency table. Conditionally on the probability p(i) that a randomly chosen unit belongs to cell i ∈ I, y is distributed
according to a multinomial modelMu(y|p,N), with

p = (p(i), i ∈ I), p(i)�0,
∑
i∈I

p(i) = 1.

Clearly p belongs to the |I| dimensional simplex.
For every non-empty set E ⊆ V , let

iE = (i�, � ∈ E), iE ∈ IE = ×�∈EI�

denote the cell in the E-marginal table; further denote with p(iE) and y(iE) the corresponding marginal probability and observed
cell-count

p(iE) =
∑

j∈I|jE=iE

p(j), y(iE) =
∑

j∈I|jE=iE

y(j).

For every Cl, let

pCl = (p(iCl ), iCl ∈ ICl ), yCl = (y(iCl ), iCl ∈ ICl ), l = 1, . . . , k
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