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Very often, the likelihoods for circular data sets are of quite complicated forms, and the func-
tional forms of the normalising constants, which depend upon the unknown parameters, are
unknown. This latter problem generally precludes rigorous, exact inference (both classical and
Bayesian) for circular data.
Noting the paucity of literature on Bayesian circular data analysis, and also because realistic
data analysis is naturally permitted by the Bayesian paradigm, we address the above problem
taking a Bayesian perspective. In particular, we propose a methodology that combines impor-
tance sampling and Markov chain Monte Carlo (MCMC) in a very effective manner to sample
from the posterior distribution of the parameters, given the circular data. With simulation
study and real data analysis, we demonstrate the considerable reliability and flexibility of our
proposed methodology in analysing circular data.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Circular data arise in diverse scientific investigations; in biology and medicine, where biological rhythms exhibited by blood
pressure, body temperature, etc., are of interest; migration directions taken by birds and insects, orientations of biological
organisms; in ecology where interest often lies in wind direction and concentration of pollutants, such as ozone, orientations
of rock cores in geology, in palaeoecology, where interest may lie in the study of palaeocurrents to infer about the direction of
river flows in the past. Moreover, all periodic physical phenomena may be analysed using circular statistics—these may include
arrival times of patients in a hospital in a day, the occurrence of airplane accidents over the year (uniform distribution of the
occurrence of accidents indicates that the accidents are really accidents). Circular statistics finds application in physics too;
indeed, the celebrated circular normal distribution (more on this subsequently) was the result of conversion of the fractional
parts of the atomic weights of the 24 lightest elements into angles. Interestingly, it seems that circular data analysis may also be
applied to sports like cricket; the bowling side may prevent an expert batsman from scoring too many runs by placing fielders
in the direction at which the batsman is most likely to hit—the most likely direction may be obtained by analysing past records
of the batsman, using available models for circular data. For many more examples, see Fisher (1993), Mardia and Jupp (1999),
Jammalamadaka and SenGupta (2001).

However, it is not straightforward to extend conventional statistical approaches to analyse circular data. The difficulties stem
primarily from the disparate topologies of the circle and the straight line; the former being concerned with circular data and
the latter associated with conventional, linear data. The likelihoods of the circular distributions usually have complicated forms,
with the normalising constant being unknown. This causes problems in inference, since the normalising constant invariably
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depends upon the model parameters. So far practical applications of circular statistical theory have been restricted to very low-
dimensional circular models (typically, one-dimensional models). But such methods do not generalise to realistic, challenging,
and high-dimensional situations.

Recognising the dearth of literature on Bayesian circular data analysis, in spite of the overwhelming influence of the Bayesian
paradigm in other areas of scientific data analysis, in this paper we adopt the Bayesian viewpoint and introduce a new algorithm
that combines importance sampling (IS) and Markov chain Monte Carlo (MCMC) to draw samples from the posterior of interest.
Typically, at each iteration, the unknownnormalising constant is estimated reliably by IS, irrespective of the dimensionality. Since
the support of circular distributions is compact, the estimate based on IS is reliable in the sense that it has finite variance. We
also propose a novel dynamic version of IS, where the IS density varies dynamically with each iteration. We argue that the latter
captures the dynamic nature of the normalising constant, which being a function of model parameters, changes with iteration as
the parameters are updated. Since our methodology is a combination of IS and MCMC, we refer to this as ISMCMC.

The rest of our paper is organised as follows. In Section 2 we provide examples of models for circular data, and note the
challenges the unknown normalising constants pose to Bayesian inference for circular data. Our proposal, which combines IS and
MCMC, and designed to tackle this problem, is introduced in Section 3. An overview of the literature on estimating (ratios of)
unknown normalising constants and the connection with our proposal, is discussed in Section 4. In Section 5 we discuss issues
related to effective choice of IS densities needed in our approach. Sequential and block updating of the parameters concerned is
discussed in Section 6. Simulation study and real applications of our methodology are discussed in Sections 7 and 8, respectively.
Conclusions and future work are discussed in Section 9.

2. Typical examples of models for directional data with unknown normalising constants

In the typical examples on circular data models that follow, 1/C, as a function of unknown parameters, denotes the unknown
normalising constant.

Univariate circular models:

(a) f (�) = 1
C(�, �)

exp{� cos(� + � sin(�))}, �, � ∈ [−�,�), ��0.

This model is symmetric, and can be used to model circular data that exhibit symmetry. Observe that if � = 0, then the
distribution is symmetric about zero; in fact, the model reduces to the well-known von-Mises (circular normal) distribution.
Hence, the von-Mises distribution is a special case of model (a).

(b)
f (�) = 1

C(�, �)
exp{� cos(� + � cos(�))}, �, � ∈ [−�,�), ��0.

Model (b) is suitable for modelling asymmetric circular data. As in (a), the von-Mises distribution is a special case of model
(b) as well. Additional details of models (a) and (b) can be found in Batschelet (1981).

(c)
f (�) = 1

C(�1,�2,�1,�2)
exp{�1 cos(� − �1) + �2 cos 2(� − �2)}, �, �1, �2 ∈ [−�,�), �1,�2 �0.

Model (c), which is often referred to as the generalised von-Mises distributions in the literature, is most suitable for circular
data that exhibit bimodalitywith different concentration around eachmode (that is, densities at the twomodes are different).

(d)
f (�) = 1

C(�n,�n,�, �)

[
1 − 2

n
{kn cos(� − �) + �n cos 2(� − �)}

]−(n+2)/2

where �,�, � ∈ [−�,�),

�n = k

1 − 2
c
n

, ��0, c<0 and �n = �

1 − 2
c
n

, ��0, � + �<
n − 2c

2
.

Model (d) is quite general in that if the data fail to provide sufficient information whether or not bimodality should be
modelled explicitly, then (d) may be used; small values of the parameter n makes bimodality pronounced, while for high
values of n, bimodality fades out.

(e)
f�,�,�(�) = 1

C(�, �,�)
{1 + tanh(��) cos(� − �)}1/�, � − ���� � + �, ��0, −∞<�<∞.

Model (e) is a very general model proposed by Jones and Pewsey (2005). Details of thismodel and illustration of our proposed
methodology on a real data application centred on model (e) have been provided in Section 8.1.

Bivariate circular (toroidal)models:

(f) f (�,	) = 1
C(�1,�2,�3,�, �)

exp{�1 cos(� − �) + �2 cos(	 − �) − �3 cos(� − � − 	 + �)}

where �,�,	, � ∈ [−�,�), and �1,�2,�2 �0.
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