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Abstract

Bayesian analyses frequently employ two-stage hierarchical models involving two-variance parameters: one controlling measure-
ment error and the other controlling the degree of smoothing implied by the model’s higher level. These analyses can be hampered
by poorly identified variances which may lead to difficulty in computing and in choosing reference priors for these parameters.
In this paper, we introduce the class of two-variance hierarchical linear models and characterize the aspects of these models that
lead to well-identified or poorly identified variances. These ideas are illustrated with a spatial analysis of a periodontal data set
and examined in some generality for specific two-variance models including the conditionally autoregressive (CAR) and one-way
random effect models. We also connect this theory with other constrained regression methods and suggest a diagnostic that can be
used to search for missing spatially varying fixed effects in the CAR model.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Advances in computing allow Bayesian analyses of complicated hierarchical models with relative ease. However,
these powerful tools must be used cautiously; the posterior for, say, a richly parameterized model may be weakly
identified, particularly for variance parameters. This may lead to computational problems and highlights the difficulty
of choosing reference priors for these parameters (Gelman, 2005). The present paper develops some theory and tools
for analyzing identification for the simplest interesting class of such models, those with two unknown variances. This
includes scatterplot and lattice smoothers and random-intercept models, among others.

To motivate this problem, consider the periodontal data in Fig. la from one subject in a clinical trial of a new
periodontitis treatment, conducted at the University of Minnesota’s Dental School (Shievitz, 1997). One of the trial’s
outcome measures was attachment loss (AL), the distance down a tooth’s root (in millimeters) that is no longer attached
to the surrounding bone by periodontal ligament. AL is measured at six locations on each tooth, for a total of N = 168
locations, and is used to quantify cumulative damage to a subject’s periodontium. The first two rows of Fig. 1a plot
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Fig. 1. Periodontal example: raw data and posterior means without (panel (a)) and with (panel (b)) terms with outlying r; set to fixed effects. (a)
Usual CAR fit. (b) Fit with two d; set to zero.

AL measured along the lingual (cheek side) and buccal (tongue side) strips of locations, respectively, of the maxilla
(upper jaw), while the final two rows plot the AL measured at mandibular (lower jaw) locations. Calibration studies
commonly show that a single AL measurement has an error with standard deviation of roughly 0.75-1 mm. Fig. 1a
shows a severe case of periodontal disease, so measurement error with a 1 mm standard deviation is substantial.

Reich et al. (2007) analyzed AL data using a conditionally autoregressive (CAR) distribution, popularized for
Bayesian disease mapping by Besag et al. (1991). In a map with N regions, suppose each region is associated with an
unknown quantity Bij.ji=1,2,..., N (here location j’s true AL). Let y; be the region j’s observable (measured AL);
assume y;|B, o is normal w1th mean f;; and variance a , independent across j. Spatial dependence is introduced
through the prior (or model) on 1 = (By1, ..., B1n) - The CAR model with L, norm (also called a Gaussian Markov
random field) for B has improper density

1
p(Bilo) o (62) "N =D exp (-1 0B1 ) . (1)
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where af controls the smoothing induced by this prior, smaller values smoothing more than larger; G is the number
of “islands” in the spatial structure (G = 2 for the periodontal grid since the two jaws are disconnected; Hodges
etal., 2003); and Q is N x N with non-diagonal entries g;; = —1 if regions / and j are neighbors and 0 otherwise, and
diagonal entries ¢;; equal to the number of region j’s neighbors. This is a multivariate normal kernel, specified by its
precision matrix (1/ ag) Q instead of the usual covariance matrix.

Fig. 1a plots the posterior mean of f; (solid lines) for the AL data described above. For this fit, both o% and af have
Inverse Gamma(0.01, 0.01) priors and 30,000 samples were drawn using Gibbs sampling. The posterior distribution
of Bi is well identified; the f§; ; have posterior standard deviations between 0.40 and 0.59 and their posterior means are
smoothed considerably. The variances are also well identified. Fig. 2a is a contour plot of the log marginal posterior of
(62, 62), with a flat prior on (g2, 62) to emphasize the data’s contribution. However, this model has N observations and
N + 2 unknowns ({f; j}, ag, GZ), so it is far from clear why the variances are identified, how the data are informative
about the variances, and how this depends on the spatial structure.

This paper’s objectives are to explain how, in problems like this, the data are informative about the variances and
to determine which features of a model lead to well-identified Variances Section 2 introduces a class of models with
two variances as above: a , which describes measurement error and a , which controls smoothing. Section 2 also
gives a useful decomposmon of the posterior distribution and derives the marginal posteriors of (og, O'g) and the ratio
of variances r = af / ag, which controls the degree of smoothing. The marginal posterior of r suggests a diagnostic
that can be used to search for contrasts in the data that are outlying with regard to the information they provide about
(ag, ag). Section 3 explores identification for two common two-variance models, the one-way random effects and CAR
models, and applies the theory of Section 2 to the periodontal example. Section 4 concludes by connecting this theory
to constrained regression methods such as the Lasso, among other things.
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