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Abstract

In this paper we examine the small sample distribution of the likelihood ratio test in the random effects model which is often
recommended for meta-analyses. We find that this distribution depends strongly on the true value of the heterogeneity parameter
(between-study variance) of the model, and that the correct p-value may be quite different from its large sample approximation. We
recommend that the dependence of the heterogeneity parameter be examined for the data at hand and suggest a (simulation) method
for this. Our setup allows for explanatory variables on the study level (meta-regression) and we discuss other possible applications,
too. Two data sets are analyzed and two simulation studies are performed for illustration.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In meta-analysis, estimates from independent studies on some (treatment) effect are combined in order to get an
estimate across studies and in order to increase the statistical power. Sometimes one takes explanatory variables on
the study level into account, then the analysis is referred to as meta-regression. The number of observations is often
quite small (around 10), so the usual large sample approximations for computing p-values and confidence limits are
not necessarily appropriate. In this paper we investigate the small sample properties of the likelihood ratio (LR) test
statistic in the so-called random effects model.

The random effects model was introduced for meta-analysis of randomized clinical trials by DerSimonian and Laird
(1986). Allowing for explanatory variables, the model is the following:

yl=,u1+817 ,ul:A19+el (i=1,...,n). (1)

Here, the observation y; is the estimated treatment effect, for example an estimated log-odds ratio, from the ith study.
The true treatment effect under the circumstances of the study is y;. Due to the within-study variation y; is estimated
with a standard error, ¢;. This source of variation is described by ¢ ~ N(O, a?). The variances aiz are assumed to be
known, although in reality they are estimated in the ith study.
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The study-specific mean, y;, is modelled as a sum of a systematic part and a random part. The systematic part is
A;0, where A; is the ith row of the known design matrix, A, of dimension n x p and 0 is a p-dimensional parameter
describing the (hypothetical) population of all possible studies. In the simple case without explanatory variables, 0 is
the average treatment effect over all possible studies and all A; = 1. Due to the specific circumstances about the ith
study (the nature of individuals in the study, the specific design of the study, etc.), i; deviates from the population
value A;0. This across- or between-study variation is modelled with e¢; ~ N(0, 72) where the between-study variance,
or heterogeneity parameter, t* is unknown. In other words, study enters the model as a random effect. We point out
that this random effects model is now recommended for meta-analysis over the fixed effects model, assuming 72 = 0;
see the fine tutorials by Normand (1999) and van Houwelingen et al. (2002).

We shall mainly be interested in testing hypotheses about the parameter 6. We investigate the small sample distribution
of the LR test statistic and find that it depends strongly on the true value of the between-study variance 2.
If all the within-study variances aiz are the same, then the random effects model is equivalent to the overdispersion
model, y; ~ N(A;0, wzoiz) where w? > 1. For this model we prove that the probabilities P, (LR > x) are increasing
in w? for every x and that there exists a lower bound (for »* =1) and an upper bound (for 72 — 00). Here, LR is the
likelihood ratio test statistic and P, is the notation for the distribution of LR when the true value of the overdispersion
parameter is . If the within-study variances are not too different, we expect the same properties to hold approximately
for the random effects model (with notation similar to the one above): P> (LR > x) increasing in 72 with a lower bound
for 72 = 0 and an upper bound for 1> — oo. If the within-study variances are very different, however, as is often the
case, then the monotonicity property does not hold, and the limit for 7> — o0 is not an upper bound.

In any case, we recommend that the dependence of 72 on the p-value P2 (LR > LRgps) be investigated whenever a
test is performed. Specifically we suggest to simulate the p-values as a function of 7> for a whole range of 72-values.
Since the number of observations is small for the applications we have in mind, computation time is not a problem.

The rest of the paper is organized as follows. The random effects model and the overdispersion model are described
in greater detail in Section 2. The properties of the distribution of LR in the random effects model are illustrated by
simulation in Section 3. In Section 4 we analyze two real data sets from the meta-analysis literature. Finally some
concluding remarks are given in Section 5.

2. The distribution of the LR test statistic

In this section we go into details about the small sample distribution of the LR test statistic in the random effects
model as well as in the related overdispersion model.

2.1. The random effects model: preliminaries

Consider again model (1), and recall that all ¢;’s and ¢;’s are independent with mean zero and variances aiz (known)
and 72 (unknown), respectively. The vector of means u = (¢q, -, 1,) belongs to the subspace L spanned by the
design matrix A which we assume has full rank, p. In other words y1, ..., y, are independent with y; ~ N(y;, 0'1-2 + ‘52),
where y € Ly and t>>0 are the unknown parameters. Our main interest lies in tests of hypotheses about y (or,
equivalently, 0).

Various estimation strategies have been discussed in the meta-analysis literature. Thompson and Sharp (1999) com-
pare a moment estimator similar to the heterogeneity estimator from DerSimonian and Laird (1986), the maximum
likelihood (ML) estimator, a restricted maximum likelihood (REML) estimator and an empirical Bayes estimator for
2. They recommend the REML estimator, but since our main interest is the LR test, we are mainly concerned with
ML estimation.

The log-likelihood function is given by

I ¢ I i — )’
l ,12 =—— lo 0'»2+‘52 - = ;, e Ly, ‘5220.
(1, ) 2; g7 +17°) 2; Sre Meb
Due to the additive variance structure, u cannot be estimated by ML independently from 2, and the ML estimator
(i, %2) must be found numerically. It is usually fruitful to “profile out” u and maximize /(fi(t?), ?) wrt. t> where
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