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Abstract

Most statistical models arising in real life applications as well as in interdisciplinary research are complex in their designs, sampling
plans, and associated probability laws, which in turn are often constrained by inequality, order, functional, shape or other restraints.
Optimality of conventional likelihood ratio based statistical inference may not be tenable here, although the use of restricted or quasi-
likelihood has spurred in such environments. S.N. Roy’s ingenious union–intersection principle provides an alternative avenue, often
having some computational advantages, increased scope of adaptability, and flexibility beyond conventional likelihood paradigms.
This scenario is appraised here with some illustrative examples, and with some interesting problems of inference on stochastic
ordering (dominance) in parametric as well as beyond parametric setups.
© 2007 Elsevier B.V. All rights reserved.

MSC: 62A10; 62A99; 62F99; 62G99; 62H99

Keywords: Beyond parametrics; Inequality; Order and shape restraints; Likelihood; Optimality; Robustness; Stochastic ordering

1. Introduction

Statistical models usually advocated for interdisciplinary research and many real life applications are rarely very
simple so as to make room for routine adaption of conventional or standard statistical inference tools. Such studies
generally involve complex designs, sampling plans and the underlying stochastics relate to probability laws which,
typically, not only involve a multitude of parameters but also these parameters subjected to various nonlinear restraints.
Inequality, order, functional and shape constraints are commonly encountered, in probability as well as sample spaces,
in such applications, and sometimes, even the large dimension and data structures may complicate the scenario consid-
erably. For beyond parametrics (i.e., nonparametrics and semiparametrics) setups, often, there could be more complex
restraints involving functional constraints. Stochastic ordering (dominance) in categorical data models, aging perspec-
tives in life distributions (such as monotone hazards, decreasing mean remaining life (DMRL) or increasing failure rate
average (IFRA)) are notable examples of this kind. In conventional statistical inference, the likelihood, sufficiency and
invariance principles play a key role in finite sample methodology, and some of the finite-sample optimality properties
usually transpire in the large sample case even without sufficiency or some other regularity conditions. Neverthe-
less, even in asymptotics, lacking support of suitable regularity assumptions, particularly in constrained environments,
optimal statistical inference may encounter roadblocks of diverse types.
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Generally, complex statistical models create impasses for computation of maximum likelihood estimators (MLE)
and likelihood ratio tests (LRT) in closed explicit or manageable forms; often, this may become a formidable task. Even
so, various algorithms have been developed for such computational convenience, the finite sample optimality properties
of MLE and LRT ranging over the exponential family of densities may not automatically transpire in more complex
models where the underlying probability laws are rarely bonafide members of such regular families. (Restricted) RMLE
and (restricted) RLRT along with various modifications of the likelihood function have therefore been advocated for
such complex models, albeit they may not universally have an established optimality property parallel to that in simple
models. S.N. Roy’s (1953) ingenious union–intersection principle (UIP), having its genesis in the likelihood principle
(LP), has emerged as a viable alternative, often having some computational advantages, increased scope of applicability
(beyond the likelihood paradigm), greater adaptability to nonstandard situations (beyond the parametrics), and good
robustness perspectives.

For a general treatise of constrained statistical inference (CSI) we refer to a recent monograph by Silvapulle and Sen
(2004) which has recaptured the prior developments in Barlow et al. (1972) and Robertson et al. (1988). The major
emphasis in Barlow et al. (1972) has been the finite sample methodology with due consideration of the basic role of the
likelihood function in such formulations. More in-depth computational aspects are additionally reported in Robertson
et al. (1988). The Silvapulle–Sen (2004) treatise goes beyond that into more general setups with adequate asymptotics
to simplify the methodology; in line with the Wald-type tests, in CSI such procedures are elaborated, and the UIP’s
basic role has also been depicted in some important problems. The present study is devoted to a display of the basic
role of UIP in CSI with emphasis on stochastic ordering (dominance), clinical trials and meta analysis, the latter topic
being very useful in the developing field of genomics or bioinformatics.

2. UIP: preliminary notion

The scenario of statistical inference changes drastically from the parametric to beyond parametric perspectives,
and even in the parametric case from the single parameter to multiparameter setups. The more complex a model is,
it is more likely that optimal statistical inference may be harder to implement. The evolving field of genomics is a
pertinent citation of the enormous difficulties that conventional statistical inference tools are encountering in this high-
dimensional low-sample size setups. The genesis of UIP lies in this complex. Moreover, CSI typically pertains to such
complex statistical environments, and hence, it is natural to appraise the interactive role of UIP in CSI. In the early days
of developments, UIP used to be motivated through the important portfolios: multiple comparisons and simultaneous
statistical inference. We find it easier to illustrate UIP with a general composite hypothesis testing problem that lends
itself naturally to simultaneous statistical inference as well as to CSI.

Let us consider a general hypothesis testing problem, not necessarily confined to a parametric model. Let H0 be the
null hypothesis of interest and let H1 be the alternative one; both of them are composite so that the likelihood function
is not completely specified under either of them. As it is the case with composite hypotheses testing problems, there
may not be in general an optimal test for testing H0 vs. H1, and in many case, even finding out a similar region may
restrict attention to a subclass of tests like invariant tests, conditional tests, etc.. This situation is likely to be worse in
CSI where the conceived restraints may preempt the relevance of invariant or conditional tests. However, for a general
class of testing problems, including in CSI, it might be possible to express

H0 =
⋂
j∈J

H0j , H1 =
⋃
j∈J

H1j , (2.1)

where J is a suitable index set, and for each j ∈ J, there exists a suitable (and often optimal in a certain sense) test for
testing H0j vs H1j . In a parametric framework, such a test could be the UMP (uniformly most-powerful) test whenever
the latter exists, could be LMP (locally most-powerful) test in some other case, and in beyond parametrics setups, such
a test can be decided on the basis of robustness, validity and efficiency considerations. Further, the index set J can be
a finite (discrete) set, or it may even be a set in continuum. In this way, there is flexibility in the decomposition of the
hypotheses and choice of appropriate test statistics. Bearing in mind the genesis of UIP in LP (Roy, 1953), we consider
first the following illustrative example depicting the connection of UIP and LP.

Let X1, . . . , Xn be n independent and identically distributed random p-vectors having a multivariate normal distri-
bution with unknown mean vector μ and dispersion matrix �, unknown but positive definite (p.d.). Consider first the
null hypothesis H0 : μ = 0 versus H1 : μ �= 0, treating � as a nuisance parameter (matrix). There is no UMP test
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