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a b s t r a c t

Poisson or zero-inflated Poisson models often fail to fit count data
either because of over- or underdispersion relative to the Poisson
distribution. Moreover, data may be correlated due to the hierar-
chical study design or the data collection methods. In this study,
we propose a multilevel zero-inflated generalized Poisson regres-
sion model that can address both over- and underdispersed count
data. Random effects are assumed to be independent and normally
distributed. The method of parameter estimation is EM algorithm
base on expectation and maximization which falls into the general
framework of maximum-likelihood estimations. The performance
of the approach was illustrated by data regarding an index of tooth
caries on 9-year-old children. Using various dispersion parameters,
throughMonte Carlo simulations, themultilevel ZIGP yieldedmore
accurate parameter estimates, especially for underdispersed data.
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1. Introduction

Statistical models that address count data have been implemented in many areas such as
the insurance industry, risk classification, health care, accident frequencies, dental epidemiology,
medicine, etc. One of the most frequently used of these types of models is Poisson regression. The
major problems hindering a valid fit in this model type tend to be the presence of excess zeros and
over- or underdispersion with respect to a Poisson distribution. A common approach for overcoming
the problem of excess zeros is the utilization of zero-inflated (ZI) regression models such as the
zero-inflated Poisson (ZIP) [15]. Inappropriate use of a Poisson or ZIP regression model, however,
may cause inaccurate parameter estimations. Various distributions have been proposed to handle
overdispersion in count data, including weighted Poisson [24,13], Quasi-Poisson [29], Poisson Inverse
Gaussian [32], Poisson lognormal [2], Poisson–Lindley [7], Negative Binomial-Lindley [37], Negative
Binomial (NB) [10] and Generalized Poisson (GP) [31]. In addition to a zero-inflated negative binomial
(ZINB) regression model, which can be used in instances of excess zeros and overdispersion in data,
the increasingly popular zero-inflated generalized Poisson (ZIGP) models can also be applied to both
over- and underdispersed count data [31,6].

Comparisons between GP and NB reveal slight differences in many aspects. For instance, the GP
distribution has a heavier tail, while the NB distribution has a largermass at zero. However, their zero-
inflated distributions, with masses at zero and fixed means and variances, can differ even more from
each other [11]. In addition, there is a relatively unknown number of situations in which the iterative
estimation technique for estimating parameters of a ZINB regression model may fail to converge [6]
while the ZIGPmodelmay convergemore often. Prior studies have described the classical Generalized
Poisson regressionmodel, namedGP-1 and introduced by Consul and Jain [5], and its properties [4,27].
A different parameterization of a Generalized Poisson model is called the GP-2 regression model
[31,34]. It is interesting to note that the GP-1 and the GP-2 regression models are natural extensions
of the Poisson regression model. Recently, the functional form of the ZIGP regression model was
extended and introduced as the ZIGP-P regression model, where the ZIGP-1 and ZIGP-2 models are
special cases of the ZIGP-Pmodel when P = 1 and P = 2, respectively [39]. It is important to note that
the GP-1 andGP-2 distributions discussed in this paper are different from the CompoundedGeometric
(CG) and G(p) distributions considered in Chowdhury et al. [3].

In models used for count data, the assessment of over- or underdispersion and zero-inflation is
very important. Gupta and Gupta et al. [8] and Famoye and Singh [6] developed score tests to assess
both zero-inflation and dispersion in a ZIGP regression model. Yang and Hardin et al. [35] proposed a
score test for overdispersion based on the GP-1 and GP-2 models; the power of this proposed test is
higher than that for the likelihood ratio (LR) and Wald test and is more appropriate in practice [34].
Xie and Wei et al. [33] extended several score tests for mixed regression models, i.e., the ZIP versus
the ZIGP regression model. Zamani and Ismail [38] proposed another score test applicable for the ZIP
regression model against the ZIGP and proved that this test was equal to the ZIP regression model
against the ZINB. Another approach called the hurdle model, like the ZI model, is a 2-part count
regression method that addresses the phenomenon of excess zeros in data. However, hurdle models
are different from the ZI models. The first component of a hurdle model, typically logistic regression,
addresses the probability of a zero count (as opposed to an ‘excess zero’) so that it depends on the
prevalence (or incidence) in the overall population because it targets all zero counts. The second part
of a hurdle model is used for the mean count among subjects with non-zero counts [25].

Multilevel or random effect models are key tools for research designs where participant data
are organized at more than one level (i.e., nested data). Such data arise routinely in various fields,
for instance, in medical research with patients nested within physicians or hospitals and biological
research involving analysis of dental problems with teeth nested within different mouths. Often,
because of the use of hierarchical designs or differences in data collection procedures such as a
longitudinal study design inwhich data are gathered for the same subjects repeatedly over a period of
time, the collected data may show zero-inflation and lack of independence as a result of its inherent
structural correlation and/or underlying heterogeneity. Lee and Wang et al. [17] proposed a class
of multilevel ZIP (MZIP) models for such data. In addition, Moghimbeigi and Eshraghian et al. [23]
introduced a multilevel ZINB (MZINB) regression model for overdispersed count data. Instead of
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