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a b s t r a c t

Convergence rates for banded and tapered estimates of large
dimensional covariance matrices are known when the vector
observations are independent and identically distributed. We
investigate the case where the independence does not hold. Our
models can accommodate suitable patterned cross covariance
matrices. These estimators remain consistent in the operator norm
with appropriate rates of convergence under suitable class of
models.
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1. Introduction

New technologies and methods in medical sciences, image processing and the internet, and many
other fields of science generate data where the dimension is high and the sample size is small relative
to the dimension. For example, microarray data [7] contains the gene expression for tens of thousands
of genes (rows) on a few observations (columns). Another example is fMRI data, which measures
the hemodynamic response in hundreds of thousands of voxels (rows) for only a few subjects or
replicates (columns). Similarly, the Netflix movie rating data [2] contains the rating information
for approximately 480,000 customers (columns) on 18,000 movies (rows). Let Xp×n denote the

∗ Corresponding author. Tel.: +91 9830496250.
E-mail addresses:monaiidexp.gamma@gmail.com (M. Bhattacharjee), bosearu@gmail.com, abose@isical.ac.in (A. Bose).

1572-3127/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.stamet.2013.08.005

http://dx.doi.org/10.1016/j.stamet.2013.08.005
http://www.elsevier.com/locate/stamet
http://www.elsevier.com/locate/stamet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.stamet.2013.08.005&domain=pdf
mailto:monaiidexp.gamma@gmail.com
mailto:bosearu@gmail.com
mailto:abose@isical.ac.in
http://dx.doi.org/10.1016/j.stamet.2013.08.005


12 M. Bhattacharjee, A. Bose / Statistical Methodology 20 (2014) 11–26

corresponding data matrix:

Xp×n =


x11 x12 x13 . . . x1n
x21 x22 x23 . . . x2n
x31 x32 x33 . . . x3n
...

...
...

...
...

xp1 xp2 xp3 . . . xpn


where the dimension p = p(n) is assumed to be increasing with the sample size n. This type of data
matrix has been modeled by identical Gaussian distribution of the columns

Cip = (x1i, x2i, . . . , xpi)′ ∼ N (µ, Σp) ∀i = 1, 2, . . . , n,

with mean vector µ ∈ Rp and variance–covariance matrix Σp = ((σij))p×p. The estimation of the
large covariance matrix Σp is crucial for statistical inference procedures.

Usually one assumes further that the columns are independent/exchangeable. Thus, genes in
microarrays, pixels in images, voxels in fMRIs and movies in Netflix movie-rating data are considered
as dependent features whereas respectively the samples, repeated images, images with respect to
different subjects or replications and customers are modeled to be independent.

However, this assumption has been questioned. Many have suggested that, in microarrays, the
arrays are not independent (e.g., [13,8,11,12]). Latent variables such as age, gender, family history,
underlying health status, measurement process, laboratory conditions may be responsible for the
dependency between two patients. For the Netflix movie-rating data, a particular type of movies are
likely to have similar ratings from customers having similar tastes. The latent variable time may be
responsible for the dependency between two replications in fMRI data sets. Specific examples of this
lack of independence can be found in [1].

Hence, there is need for models which allow for dependence between columns. [8] proposed the
matrix-variate normal as a model for microarrays. Mean-restricted matrix-variate normal was con-
sidered by [1]. This distribution, denoted by Xp×n ∼ Np,n(ν, µ, Σp, ∆), has separatemean and covari-
ance parameters for the rows, ν ∈ Rp, Σp = ((σij))p×p, and the columns, µ ∈ Rn, ∆ = ((δij))n×n. If
the matrix is transformed into a vector of length np, we have that vec(X) ∼ N (vec(M), Ω), where
M = ((νi + µj))p×n, Ω = ∆ ⊗ Σp and ⊗ is the Kronecker product between two matrices. In this
model the correlation between columns is controlled without considering the effect of the compo-
nents (rows); that is,

corr(xki, xlj)
corr(xmi, xmj)

=
δkl

√
δkkδll

∀i, j = 1, 2, . . . p and m = 1, 2, . . . , n.

Wewill assume that Cip ∼ Np(0, Σp) ∀i = 1, 2, . . . , n are identically distributed and the distribution
is Gaussian with zero mean. However, we will allow dependence of appropriate nature between the
columns. We call this dependence the cross covariance structure. In this paper we work under three
different restrictions on cross covariance structures. In one case, the restriction is on the growth of
the powers of the trace of certain matrices derived from the cross covariance structure. In the second
case, the dependence among any two columns weakens as the lag between them increases and in the
third case we assume weak dependence among the last few columns. See Section 2 for details.

The existing methods to estimate Σp (under column independence) involves banding or tapering
of the sample variance–covariance matrix. [4] proved that suitably banded and tapered estimators
are both consistent in the operator norm for the sample variance–covariance matrix as long as
n−1 log p → 0 uniformly over some fairly natural well-conditioned families of covariance matrices.
They also obtained some explicit rates.

In the first case, we show that the convergence rate of the banded estimator is the same as in
the i.i.d. case of [4] (see Theorem 3.1 of Section 3) under a trace condition. We also provide some
sufficient conditions that imply this trace condition. The other two cases do not fall under the purview
of Theorem 3.1. Under appropriate conditions we obtain explicit rates of convergence for the banded
estimators (see Theorems 3.2 and 3.3). In particular, for all three cases, the estimators continue to
remain consistent in the operator norm.
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