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a b s t r a c t

Consider two independent gamma populations π1 and π2, where
the population πi has an unknown scale parameter θi > 0 and
known shape parameter αi > 0, i = 1, 2. Assume that the correct
ordering between θ1 and θ2 is not known a priori and let θ[1] ≤ θ[2]
denote the ordered values of θ1 and θ2. Consider the goal of iden-
tifying (or selecting) the population associated with θ[2], under the
indifference-zone approach of Bechhofer (1954), when the qual-
ity of a selection rule is assessed in terms of the infimum of the
probability of correct selection over the preference-zone. Under the
decision-theoretic framework this goal is equivalent to that of find-
ing theminimax selection rule when (θ1, θ2) lies in the preference-
zone and 0–1 loss function is used (which takes the value 0 if
correct selection ismade and takes the value 1 if correct selection is
notmade). Based on independent observations from the two popu-
lations, the minimax selection rule is derived. This minimax selec-
tion rule is shown to be generalized Bayes and admissible. Finally,
using a numerical study, it is shown that theminimax selection rule
outperforms various natural selection rules.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Gamma distribution is widely used in survival analysis, reliability engineering and life testing to
provide representations of various physical situations. Consider two different gamma distributions
representing a characteristic of two different physical situations (say, lifetimes of a product
manufactured using two different manufacturing processes). Let π1 and π2 denote the populations
comprising of realizations of the characteristic of two physical situations (say, populations of lifetimes
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of units manufactured using the twomanufacturing processes). It may be of interest to select the best
of two populations, where the quality of a population is assessed in terms of a function of parameters
associated with the probability distribution representing it (say, the quality of a manufacturing
process is assessed in terms of themean lifetime of the units produced through it). Tomake the above
discussion precise, let π1 and π2 be two independent gamma populations such that the observation
Xi from the population πi has the Lebesgue probability density function (p.d.f.)

fi(x|θi) =


1

Γ (αi)θ
αi
i

xαi−1e−
x
θi , if x > 0

0, otherwise,
i = 1, 2,

where Γ (α), α > 0, is the usual gamma function, α1 > 0 and α2 > 0 are known shape parameters,
and θ1 > 0 and θ2 > 0 are unknown scale parameters. Note that if Xi1, . . . , Xini is a random sample
of size ni from the population πi, then Ti =

ni
j=1 Xij is a complete and sufficient (and hence minimal

sufficient) statistic for {f (·|θi) : θi > 0}, i = 1, 2. Moreover Ti again has gamma distribution with
the same scale parameter θi and known shape parameter βi = niαi, i = 1, 2. Thus, without loss of
generality, we take n1 = n2 = 1. Let Ω = {(θ1, θ2) : θi > 0, i = 1, 2} denote the parameter
space and let χ = {(x1, x2) : xi > 0, i = 1, 2} denote the sample space. Let θ[1] = min(θ1, θ2) and
θ[2] = max(θ1, θ2) so that θ[1] ≤ θ[2] are the ordered values of θ1 and θ2. Suppose that the quality of
the population πi is assessed in terms of the corresponding scale parameter θi, i = 1, 2. We say that
the population π1 (π2) is best if θ1 > θ2 (θ2 > θ1). In case of tie θ1 = θ2, since both the populations
are equally good, consequences ofmaking incorrect selectionwill be null and thereforewemay define
either of the two populations as the best population. In case of tie θ1 = θ2 we define the population
π2 to be the best population. Thus we say that the population π1 (π2) is the best if θ1 > θ2 (θ1 ≤ θ2).
Equivalently we say that the population π1 (π2) is worst if θ1 ≤ θ2 (θ1 > θ2). Let π(1) and π(2),
respectively, denote the worst and the best populations, so that

π(1) =


π1, if θ1 ≤ θ2
π2, if θ1 > θ2

and π(2) =


π2, if θ1 ≤ θ2
π1, if θ1 > θ2.

Assume that the scale parameters θ1 and θ2 are completely unknown so that the correct pairing
between themembers of {π1, π2}with those of {π(1), π(2)} is not known a priori. The goal is to identify
(or select) the best population π(2) based on X = (X1, X2). A ‘‘Correct Selection’’ (CS) is defined as the
event which fulfills this goal, i.e., CS = {population π(2) is selected}.

The problem described above may be posed as a statistical decision problem with action space
A = {1, 2}, where taking action i ∈ A corresponds to selection of πi, i = 1, 2, as the best population.
A selection rule δ may be defined as a map from χ to [0, 1] such that, for (x1, x2) ∈ χ, δ(x1, x2)
is the conditional probability of selecting π1 as the best population given that (X1, X2) = (x1, x2),
and 1 − δ(x1, x2) is the conditional probability of selecting π2 as the best population given that
(X1, X2) = (x1, x2). Let D denote the class of all selection rules.

Note that the probability of CS depends on the choice of selection rule and on unknown parameters
θ1 and θ2. For a given selection rule δ and for given θ = (θ1, θ2) ∈ Ω , let Pθ (CS|δ) denote the
probability of CS achieved using selection rule δ when θ ∈ Ω is the true parametric value. One may
like to use a selection rule δ for which

Pθ (CS|δ) ≥ P∗, ∀ θ ∈ Ω, or equivalently, inf
θ∈Ω

Pθ (CS|δ) ≥ P∗, (1.1)

where P∗
∈
 1
2 , 1


is a pre-assigned real constant. The condition P∗

≥
1
2 is reasonable in the sense

that the probability requirement Pθ (CS|δ0) =
1
2 is met by the no-data rule δ0


=

1
2 , ∀ (x1, x2) ∈ χ


which selects one of the two populations at random as the best population. Commonly used values
of P∗ are 0.9, 0.95 and 0.99. Under quite general conditions it is known that, for any selection rule
δ, infθ∈Ω Pθ (CS|δ) ≤

1
2 (cf. Misra and Dhariyal [26]), owing to the fact that θ1 and θ2 may be arbitrarily

close. Thus the probability requirement (1.1) cannot be met unless some additional conditions are
imposed. Based on the observation that if θ1 and θ2 are close then the consequences of making the
incorrect selection may be negligible, Bechhofer [10] suggested to control the probability of CS only



Download English Version:

https://daneshyari.com/en/article/1150850

Download Persian Version:

https://daneshyari.com/article/1150850

Daneshyari.com

https://daneshyari.com/en/article/1150850
https://daneshyari.com/article/1150850
https://daneshyari.com

