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a b s t r a c t

In this paper, we are interested in an estimation problem con-
cerning the regression coefficient parameter matrices of M inde-
pendent multivariate multiple linear models. More specifically, we
consider the case where the M parameter matrices are suspected
of satisfying some restrictions. Given such uncertainty, we study a
class of shrinkage estimators which give an improvement over the
performance of the quasi-maximum likelihood estimator (QMLE).
To this end, we derive a theorem which is useful in establishing
the asymptotic distributional risk function of a class of shrinkage
estimators of the regression coefficient parameter matrices.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In statistical modeling, it is common to model simultaneous influence of several covariates on a
response variable. In particular, the statistical literature shows that themultiple regression technique
is an extremely powerful methodology. Further, in order to model the influence of the same set of
explanatory variables on several correlated responses, the multivariate multiple regression model
(MMRM) seems to be the most appropriate methodology. Indeed, there are diverse situations where
the correlation of the response variables is quite high. For example, systolic blood and diastolic blood
pressures are positively correlated as is the number of cavities in the upper jaw and the lower jaw. In
addition, classification and discrimination analysis are other common procedures used when several
correlated responses occur. Some of the recent advances inMMRMare applied to artificial intelligence
and machine learning theory, as described, for example, in [7]. Further, [5] suggested a shrinkage
multivariate least squares estimator through canonical analysis to utilize the relationship of response
variables.
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In this paper, we consider M independent n × m-random matrices Y (i), U (i), for i = 1, 2, . . . ,M
which satisfy multivariate multiple linear model

Y (i) = X (i)θ(i) + U (i) (1.1)

where X (i) is n × k random matrix, and θ(i) is a k × m parameter matrix. For each i = 1, 2, . . . ,M ,
we assume that the randommatrices Y (i) and X (i) are observed and the matrix U (i) is the unobserved
noise. For concreteness, we consider the following motivating examples.

Motivating example: Themotivating example is based on the data set found at http://lib.stat.cmu.edu/
datasets/Plasma_Retinol, and consists of 315 observations. Three groups (i.e. M = 3) are considered.
Namely, we have 122who use vitamins fairly often, 82 use vitamins but not often, and 111who never
use vitamins. Thus, n1 = 122, n2 = 82 and n3 = 111. In this data set, we also have k = 12 explanatory
variables: X1 ≡ AGE (years), X2 ≡ SEX (1 = Male, 2 = Female), X3 ≡SMOKSTAT1: Smoking status (1
= Never), X4 ≡ SMOKSTAT2: Smoking status (1 = Former), X5 ≡ QUETELET (weight/(height 2)), X6 ≡

CALORIES: Number of calories consumed per day, X7 ≡ FAT: Grams of fat consumed per day, X8 ≡

FIBER: Grams of fiber consumed per day, X9 ≡ ALCOHOL: Number of alcoholic drinks consumed per
week, X10 ≡ CHOLESTEROL: Cholesterol consumed (mg/day), X11 ≡ BETADIET : Dietary beta-carotene
consumed (mcg per day), X12 ≡ RETDIET : Dietary retinol consumed (mcg/day). Here, m = 2 and, we
have Y (1) which is a 122× 2matrix, Y (2) which is a 82× 2matrix, and Y (3) which is a 111× 2matrix.
Further, the first column of Y (i), i = 1, 2, 3 consists of the quantity (in ng/ml) of Plasma beta-carotene
(BETAPLASMA), and the second column is the quantity (in ng/ml) of Plasma Retinol (RETPLASMA).

It is reasonable to assume that the 3 samples are independent as they correspond to 3 different
groups. Assumption (A5) given in Section 2 is the mathematical interpretation of this realistic
assumption. However, for each sample, the response variables are likely correlated, which justifies the
need for multivariate regression. In other words, within the ith group (i = 1, 2, 3), the two columns
of Y (i) are likely correlated.

Remark 1.1. Another application context of the proposed method, related to the above motivating
example, consists of the scenario where there are M geographical areas for which, for example,
the same number of observations were randomly selected. Also, the level of using vitamins can be
analyzed by creating two categorical variables: VITUSE1 = 1 if vitamins are used often, 0 otherwise;
and VITUSE2 = 1 if vitamins are used but not often, 0 otherwise. Once again, in this context, it
is reasonable to assume that the M samples are independent as they correspond to M different
geographical areas. However, within the ith geographical area, (i = 1, 2, . . . ,M), the two columns of
Y (i) are more likely correlated.

In this paper, we are interested in estimating the parameter matrices θ(i), i = 1, 2, . . . ,M when
matrices θ(i) are suspected to lie in a certain candidate subspace of dimension q < m, as for example,

L1θ(1)L2 = L1θ(2)L2 = · · · = L1θ(M)L2, (1.2)

where L1 is a given q× k-matrix of full rank with k < q and L2 is a knownm× r full rank matrix with
r ⩽ m. In the sequel, for the sake of simplicity, we consider the case where n1 = n2 = · · · = nM = n.

It should be noticed that the subspace candidate in (1.2) extends that of [7, p. 168]. Thus, the
restriction in (1.2) is useful, for example, in model assessment and variable selection, and in profile
analysis. Also, it is useful in economical modeling where, for instance, different groups of countries
decide to unify their economic policies, as is the case for the European Union countries. Indeed,
since the economic policies of the united countries are supposed to be harmonized, it is reasonable
to suspect homogeneity of their economic indicators. In this context, the parameter matrices θ(i),
i = 1, 2, . . . ,M would satisfy some restrictions as in (1.2).

To simplify the notation, let θ =


θ(1)

′

, θ(2)
′

, . . . , θ(M)
′
′

, and let A ⊗ B stand for the Kronecker
product of the matrices A and B. Then, the restriction in (1.2) can be rewritten as (L3 ⊗ L1) θL2 = 0,
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