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a b s t r a c t

Data from a surveillance system can be used to estimate the size
of a disease population. For certain surveillance systems, a bino-
mial mixture model arises as a natural choice. The Chao estimator
estimates a lower bound of the population size. The Zelterman es-
timator estimates a parameter that is neither a lower bound nor an
upper bound. By comparing the Chao estimator and the Zelterman
estimator both theoretically and numerically, we conclude that the
Chao estimator is better.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Estimating population sizes has been thoroughly investigated [5]. There are various mechanisms
from which data are generated. Particularly, we will focus on applications in which individuals are
subject to detection via surveillance systems. For instance, a household can serve as a useful unit of
disease surveillance, and a binomial mixture model can arise by assuming that the number of disease
cases in a household is binomial and that the probability that one person is infected is allowed to vary
over households [1,16,14,15,8–10]. There are various epidemiological applications of the binomial
mixture model (e.g., [6,18,19]).

We will use the nonparametric binomial mixture model. Some parametric mixture models were
considered in the literature and their disadvantages were discussed in [13]. In the nonparametric
model, each of the estimators in [2,20] developed in the Poisson setting and favored by epidemiolo-
gists, admits a counterpart in the present binomial setting [4,17]. If the size parameter for binomial
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distribution is larger than two, then the Zelterman estimator consistently estimates a parameter that
is neither a lower bound nor an upper bound of the population size, while the Chao estimator con-
sistently estimates a lower bound. The Zelterman estimator may yield confidence intervals for the
population size with poor coverage probabilities. Although the Zelterman estimator was declared to
be robust, its performance is worse than the Chao estimator. The Chao estimator deserves our recom-
mendation.

The results are presented in Section 2. A simulation experiment and a real example are reported in
Section 3. The proofs are provided in the Appendix.

2. Results

Suppose that there are s individuals subject to t times of detection, t > 2. Let Xi be the number
of times when individual i is detected, which is binomial with size t and probability πi. The Xi are
independent given the πi that arise as a random sample from a mixing distribution G. When G is
discrete, it can be written as G =

K
k=1 ψkδ(ϖk), where ψk > 0,

K
k=1 ψk = 1, and δ(π) is a

distribution degenerate at π . Marginally, the Xi arise as a random sample from a mixture density
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⊤ is multinomial with index n+ and cell probabilities hG(x)/{1− hG(0)}. To reformulate these

cell probabilities, we use a mixing distribution Q =
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It is easily shown that hG(x)/{1 − hG(0)} can be written as a mixture density
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These facts yield a conditional likelihood

L(Q ) =
n+!
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nx
.

The nonparametric maximum likelihood estimator (NPMLE) Q satisfies L(Q ) 6 L(Q ),∀Q , which is
discrete with finitely many support points. To ensure its existence,Q is allowed to put some mass on
zero.Moreover,Q is not necessarily unique. The reason is that themodel ofmixtures of zero-truncated
binomial densities is non-identifiable in the sense that there are mixing distributions Q and M with
Q ≠ M and fQ = fM .

To estimate the population size s, we observe that

s =
E(n+)

1 − hG(0)
= E(n+)+ E(n+) ·

hG(0)
1 − hG(0)

.

The problem becomes estimating the odds hG(0)/{1 − hG(0)} that can be re-written as

θ(Q ) =
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The odds θ(Q ) is non-identifiable in the sense that there are mixing distributions Q and M such that
θ(Q ) ≠ θ(M) and fQ = fM [9,10]. This invites one to ask what has been estimated by an existing
estimator for thepopulation size s. The fact is that, given an estimator for s, it admits a de facto estimand
that may differ from s.
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