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a b s t r a c t

With evolving genomic technologies, it is possible to get different
measures of the same underlying biological phenomenon using
different technologies. The goal of this paper is to build a prediction
model for an outcome variable Y from covariates X . Besides X , we
have surrogate covariates W which are related to X . We want to
utilize the information inW to boost the prediction for Y using X . In
this paper, we propose a kernelmachine-basedmethod to improve
prediction of Y by X by incorporating auxiliary information W . By
combining single kernelmachines, we also propose a hybrid kernel
machine predictor, which can yield a smaller prediction error
than its constituents. The prediction error of our kernel machine
predictors is evaluated using simulations. We also apply our
method to a lung cancer dataset and anAlzheimer’s disease dataset.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Biomarkers in cancer research are considered to be central to prevention, detection andmonitoring
of the disease.With continual development of genomic technologies, one consequence is that different
data with biomarkers measured by different technologies are available. As a motivating example, we
consider data from a lung cancer study in Chen et al. [8]. One of the main scientific goals in Chen
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et al. [8] focuses on predicting survival time in patients with lung cancer. Affymetrix gene expression
datawere obtained on 439 tumor samples. As a follow-up, a subset of 47 samples wasmeasured again
using a quantitative real-timepolymerase chain reaction (qRT-PCR) platform.While both technologies
measure gene expression, the Affymetrix data are regarded as a noisy version the qRT-PCR data since
qRT-PCR technology is more generalizable and clinically applicable. The goal is to develop prognostic
models for the survival outcome from qRT-PCR data. The question we consider in this paper is how
the auxiliary information in the Affymetrix data can be used to improve the prediction of survival
time given qRT-PCR data. Let Y denote the survival time, X denote qRT-PCR measurement of gene
expression and W be Affymetrix measurement. Depending on whether a tumor sample is measured
by qRT-PCR, samples are divided into two parts A and B. Subsample A consists of the 47 tumor
sampleswhich aremeasured by qRT-PCR in a follow-up study. And the remaining tumor samples form
subsample B. They are denoted by (Y A, XA,W A) and (Y B,W B) respectively. The goal in this paper is
to use auxiliary information inW to boost the prediction of Y |X .

Boonstra et al. [2] first considered this non-standard prediction problem assuming the following
models:

Y = β0 + XTβ + ϵ; W = φIp + νX + ε, (1)

where Y is a continuous response, X and W are p-dimension biomarker measurements, β is a p × 1
vector, Ip is a p × p identity matrix, ϵ ∼ N(0, σ 2), ε ∼ Np(0, τ Ip), β0, φ, ν, σ and τ are scalars. They
proposed a general class of targeted ridge (TR) estimators which include ridge regression (Hoerl and
Kennard [11]) as a special case. Ridge regression estimator shrinks the least squares estimator toward
zero. And TR estimators shrink the least squares estimator to certain targets derived fromW B and Y B,
which is how the auxiliary information in subsample B is used. More details can be found in Boonstra
et al. [2]. Generally speaking, TR estimators are biased. It is possible that TR canhave a better prediction
performance by largely reducing variance to offset the introduced bias (Boonstra et al. [2]).

However, we observe two major disadvantages of TR. First, TR fails when the dimension of X is
not equal to that of W . The formulas proposed in Section 2 of [2] do not work when X and W are
of different dimensions. Second, the prediction performance of TR may not be good when the true
underlying functional relationship in Eq. (1) is not linear. To address those two issues, we propose
a kernel method based on kernel ridge regression (Cristianini and Shawe-Taylor [9]) to solve the
aforementioned prediction problem. One general model consistent with the context is:

Y = f (X) + ϵ; X = h(W ) + ε, (2)

where ϵ ∼ N(0, σ 2) and ε ∼ N(0, τ 2). Functions f (·) and g(·) are in some Hilbert functional
spaces spanned by kernel functions. More details can be found in Section 2. If one takes W as an
error-prone version of X , X = h(W ) + ε can be viewed as a weakly parametric measurement error
model (Carroll et al. [6]). Kernel machine regression has been widely used in recent works (see [5,
14,16,15] for more details). It is flexible and allows for complicated relationships between response
and predictor, which is desirable in practice. The fact that kernel machine makes few assumptions
can give it an advantage in certain scenarios. For example, the TR class of estimators are inefficient
when the linearity assumption is violated. The goal of this paper is to establish a prediction model for
new observations Xnew . The performance of the predictive model is typically measured by the mean
squared prediction error (MSPE):

MSPE(f̂ ) = E[Ynew − f̂ (Xnew)]2 = σ 2
+ E[f (Xnew) − f̂ (Xnew)]2. (3)

The rest of the paper is organized as follows. Themain result of this paper is presented in Section 2.
We first review some useful facts about reproducing kernel Hilbert space (RKHS) and kernel ridge re-
gression. Based on that, we propose a kernel machine predictor for the prediction problem considered
in this paper. In the end, a hybrid kernel machine predictor is also proposed based on combination of
single kernel machine predictors. In Section 3, we present a simulation study to compare our ker-
nel method with the TR method proposed in [2]. A lung cancer dataset and a GRIN2B gene dataset
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