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a b s t r a c t

The main purpose of this paper is to investigate the strong ap-
proximation of the weighed bootstrap of empirical and quantile
processes. The bootstrap idea is to reweight the original empirical
distribution by stochastic weights. Our results are applied in two
concrete statistical problems: the Q–Q processes as well as the
kernel-type density estimator. Finally, a general notion of boot-
strapped empirical quantile processes, from randomly censored
data, constructed by exchangeablyweighting samples is presented.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The present paper is mainly concerned with the strong approximations of the weighted bootstrap
empirical and quantile processes. Recall that the bootstrap technique, which is a form of resampling
procedures for statistical inference, was introduced in [23]’s seminal paper. The bootstrap may be
described briefly as follows. Let T (F) be a functional of an unknown distribution function (df) F(·),
X1, . . . , Xn a sample from F(·), and X∗1 , . . . , X

∗
n an independent and identically distributed (i.i.d.)

sample with common distribution given by the empirical distribution Fn(·) of the original sample.
The distribution of {T (Fn) − T (F)} is then approximated by that of {T (F∗n ) − T (Fn)} conditionally
upon X1, . . . , Xn, with F∗n (·) being the empirical distribution of X∗1 , . . . , X

∗
n . The key idea behind the

bootstrap is that if a sample is representative of the underlying population, then one can make
inferences about the population characteristics by resampling from the current sample. Roughly
speaking, it is known that the bootstrap works in the i.i.d. case if and only if the central limit theorem
holds for the random variable under consideration. For further discussion we refer the reader to the
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landmark paper by Giné and Zinn [28]. The following notation is needed for the statement of our
results. LetX1, X2, . . . be a sequence of i.i.d. randomvariables (rv’s)with commondf F(t) = P(X1 ≤ t).
For each n ≥ 1, the empirical distribution function of X1, . . . , Xn, is given by

Fn(t) = n−1#{Xi ≤ t : 1 ≤ i ≤ n}, for −∞ < t <∞,

where # stands for cardinality. The quantile function (qf) pertaining to F(·), is defined, for u ∈ (0, 1),
byQ (u) = inf{x : F(x) ≥ u}. The empirical quantile function is given, for each n ≥ 1 and u ∈ (0, 1), by
Qn(u) = inf{x : Fn(x) ≥ u}.Given the sample X1, . . . , Xn, let X∗1 , . . . , X

∗
m be conditionally independent

rv’s with common distribution function Fn(·). Let

Fm,n(t) = m−1#{X∗i ≤ t : 1 ≤ i ≤ m}, for −∞ < t <∞,

denote the classical Efron (or multinomial) bootstrap (see, e.g. [23,25] for more details). Consider also
the bootstrapped empirical quantile function, belonging to Fm,n(·),

Qm,n(u) = inf{x : Fm,n(x) ≥ u}, for 0 < u < 1.

Define the bootstrapped empirical and quantile processes, respectively, by

ξm,n(t) := m1/2(Fm,n(t)− Fn(t)), for −∞ < t <∞, (1.1)

and

ζm,n(t) := m1/2(Qm,n(t)− Qn(t)), for 0 < t < 1. (1.2)

Among many other things, [8] established weak convergence of the processes in (1.1) and (1.2),
which enabled them to deduce the asymptotic validity of the bootstrapmethod in forming confidence
bounds for F(·). Shorack [47] gave a simple proof of weak convergence of the process in (1.1) (see
also [48, Section 23.1]). The Bickel and Freedman result for ξm,n(·) has been subsequently generalized
for empirical processes based on observations in Rd, d > 1, as well as in very general sample spaces
and for various set and function-indexed randomobjects (see, for example [6,27]). This line of research
found its ‘‘final results’’ in the works of [28,18]. There is a huge literature on the application of the
bootstrap methodology to nonparametric kernel density and regression estimation, among other
statistical procedures, and it is not the purpose of this paper to survey this extensive literature.
This being said, one of the possible drawbacks of [23]’s original bootstrap formulation is that some
observations may be used more than once while others are not sampled at all. To overcome this
difficulty, a more general formulation of the bootstrap has been introduced: theweighted (or smooth)
bootstrap, which has also been shown to be computationally more efficient in several applications.
For a survey of further results and a deeper discussion on weighted bootstrap consult [4,46]. The
performance of different kinds of bootstrap procedures is reviewed by Bickel and Freedman [9] in
terms of expansions. Exactly as for Efron’s bootstrap, the question of rates of convergence is an
important one (both in probability and in statistics) and has occupied a great number of authors
(see [35,19,16,30] and the references therein).

In this paper, the strong approximations for the weighted bootstrap empirical and quantile
processes by a sequence of Brownian bridges will be investigated. The reason for employing the
strong approximation theory instead of theweak convergence theory is motivated by their usefulness
is probability theory as well as in statistical applications. Precisely, many well-known probability
theorems can be considered as consequences of results about strong approximation of sequences
of sums by corresponding Gaussian sequences. We shall mention that the rates of convergence for
the distribution of smooth functionals of the empirical and quantile processes can also be deduced
from the strong approximation results. We refer to [35,16], [15, Chapter 3], [19, Chapters 4–5] and
[48, Chapter 12] for expositions and references about this problem. To the best of our knowledge,
the results presented here respond to a problem that has not been studied systematically until the
present, and it gives the main motivation to this paper.

The remainder of the present paper is organized as follows. Section 2 introduces the notation
and definitions needed to state the strong approximations of the weighed bootstrap of uniform
empirical and quantile processes, which are given in Theorems 3 and 4. Section 3 is devoted to
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