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a b s t r a c t

This work deals with the estimation of the noise in functional linear regression when both
the response and the covariate are functional. Namely, we propose two estimators of the
covariance operator of the noise. We give some asymptotic properties of these estimators,
and we study their behavior on simulations.
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1. Introduction

We consider the following functional linear regression model where the functional output Y (·) is related to a random
function X(·) through

Y (t) =

 1

0
S(t, s) X(s)ds + ε(t). (1)

Here S(·, ·) is an unknown integrable kernel:
 1
0

 1
0 |S(t, s)|dtds < ∞, to be estimated. ε is a noise random variable,

independent of X . The functional variables X, Y and ε are random functions taking values on the interval I = [0, 1] of
R. Considering this particular interval is equivalent to considering any other interval [a, b] in what follows. For the sake of
clarity, we assume moreover that the random functions X and ε are centered. The case of non centered X and Y functions
can be equivalently studied by adding an additive non random intercept function in model (1).

In all the sequel we consider a sample (Xi, Yi)i=1,...,n of independent and identically distributed observations, following
(1) and taking values in the same Hilbert space H = L2([0, 1]), the space of all real valued square integrable functions
defined on [0, 1]. The objective of this paper is to estimate the unknown noise covariance operator Γε of ε and its trace
σ 2

ε := tr(Γε) from these data sets. The estimation of the noise covariance operator Γε is well known in the context of
multivariate multiple regression models, see for example Johnson and Wichern (2007, section 7.7). The question is a little
more tricky in the context of functional data. Answering it will then make possible the construction of hypothesis testing in
connection with model (1).

Functional data analysis has given rise to many theoretical results applied in various domains: economics, biology,
finance, etc. The monograph by Ramsay and Silverman (2005) is a major reference that gives an overview on the subject

∗ Corresponding author.
E-mail address: christophe.crambes@univ-montp2.fr (C. Crambes).

http://dx.doi.org/10.1016/j.spl.2016.02.006
0167-7152/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.spl.2016.02.006
http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spl.2016.02.006&domain=pdf
mailto:christophe.crambes@univ-montp2.fr
http://dx.doi.org/10.1016/j.spl.2016.02.006


8 C. Crambes et al. / Statistics and Probability Letters 113 (2016) 7–15

and highlights the drawbacks of considering a multivariate point of view. Novel asymptotic developments and illustrations
on simulated and real data sets are also provided in Horváth and Kokoszka (2012). We follow here the approach of Crambes
and Mas (2013) that studied the prediction in the model (1) revisited as:

Y = S X + ε, (2)

where S : H → H is a general linear integral operator defined by S(f )(t) =
 1
0 S(t, s)f (s)ds for any function f in H . The

authors showed that the trace σ 2
ε is an important constant involved in the square prediction error bound that participate to

determine the convergence rate. The estimation of σ 2
ε will thus provide details on the prediction quality in model (1).

In this context of functional linear regression, it is well known that the covariance operator of X cannot be inverted
directly (see Cardot et al., 1999), thus a regularization is needed. In Crambes and Mas (2013), it is based on the
Karhunen–Loève expansion and the functional principal component analysis of the (Xi). This approach is also often used
in functional linear models with scalar output, see for example Cardot et al. (1999).

The construction of the estimator Ŝ is introduced in Section 2. Section 3 is devoted to the estimation of Γε and its trace.
Two types of estimators are given. Convergence properties are established and discussed. The proofs are postponed in
Section 5. The results are illustrated on simulation trials in Section 4.

2. Estimation of S

2.1. Preliminaries

We denote respectively ⟨·, ·⟩H and ∥.∥H the inner product and the corresponding norm in the Hilbert space H . We shall
recall that ⟨f , g⟩H =

 1
0 f (t)g(t)dt , for all functions f and g in L2([0, 1]). In contrast, ⟨·, ·⟩n and ∥.∥n stand for the inner

product and the Euclidean norm in Rn. The tensor product is denoted ⊗ and defined by f ⊗ g = ⟨g, .⟩H f for any functions
f , g ∈ H .

We assume that X and ε have a second moment, that is: E[∥X∥
2
H ] < ∞ and E[∥ε∥2

H ] < ∞. The covariance operator of
X is the linear operator defined on H as follows: Γ := E[X ⊗ X]. The cross covariance operator of X and Y is defined as
∆ := E[Y ⊗ X]. The empirical counterparts of these operators are: Γ̂n :=

1
n

n
i=1 Xi ⊗ Xi and ∆̂n :=

1
n

n
i=1 Yi ⊗ Xi.

An objective of the paper is to study the trace σ 2
ε . We thus introduce the nuclear norm defined by ∥A∥N =


+∞

j=1 |µj|,
for any operator A such that


+∞

j=1 |µj| < +∞ where (µj)j≥1 is the sequence of the eigenvalues of A. We denote ∥.∥∞ the
operator norm defined by ∥A∥∞ = sup∥u∥=1 ∥Au∥.

2.2. Spectral decomposition of Γ

It is well known thatΓ is a symmetric, positive trace-class operator, and thus diagonalizable in an orthonormal basis (see
for instanceHsing andEubank, 2015). Let (λj)j≥1 be its non-increasing sequence of eigenvalues, and (vj)j≥1 the corresponding
eigenfunctions in H . Then Γ decomposes as follows:

Γ =

∞
j=1

λjvj ⊗ vj,

For any integer k, we define Πk :=
k

j=1 vj ⊗ vj the projection operator on the sub-space ⟨v1, . . . , vk⟩. By projecting Γ

on this sub-space, we get :

Γ |⟨v1,...,vk⟩ := Γ Πk =

k
j=1

λjvj ⊗ vj.

2.3. Construction of the estimator of S

We start from the moment equation

∆ = S Γ . (3)

On the sub-space ⟨v1, . . . , vk⟩, the operator Γ is invertible, more precisely (Γ Πk)
−1

=
k

j=1 λ−1
j vj ⊗ vj. As a consequence,

with Eq. (3) and the fact that ΠkΓ Πk = Γ Πk we get, on the sub-space ⟨v1, . . . , vk⟩, ∆Πk = (S Πk) (Γ Πk). We deduce that
S Πk = ∆Πk (Γ Πk)

−1.

Now, taking k = kn, denoting Π̂kn :=
kn

j=1 v̂j ⊗ v̂j and the generalized inverse Γ̂ +

kn := (Γ̂nΠ̂kn)
−1, we are able to define

the estimator of S. We have

Γ̂n =

∞
j=1

λ̂jv̂j ⊗ v̂j =

n
j=1

λ̂jv̂j ⊗ v̂j,
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