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a b s t r a c t

Recently, Li and Wang (2012a,b) and Wang (2007) have proposed a simulation-based
estimator for generalized linear and nonlinear mixed models with complete longitudinal
data. This estimator is constructed using the simulation-by-parts technique which leads
to the unique feature that it is consistent even using finite number of simulated random
points. This paper extends the methodology to deal with incomplete longitudinal data by
applying the inverse probability weighting method for the monotone missing-at-random
response data. The finite sample performance of this estimator is investigated through
simulation studies and compared with the multiple imputation approach.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In biomedical, environmental and social sciences research, longitudinal data analysis is widely used and constitutes the
fundamental statistical research methodologies. Generalized linear mixed models (GLMM) have been widely used in the
modeling of longitudinal data. Li and Wang (2012a) proposed a simulation-based estimator (SBE) for GLMM based on the
first two marginal moments of the response variables, which does not rely on the normality distribution assumption for
random effects. Li and Wang (2012b) extended the SBE to the GLMM where some covariates are measured with error. This
approach was originally studied by Wang (2007) for nonlinear mixed effects models. The SBE is constructed using a novel
simulation-by-parts technique to ensure its consistency by using finite number of simulated random points. This is the
key difference from many other simulation-based estimators proposed in the literature, where they require the number of
simulated random points go to infinity to achieve consistency. So far, the SBE is only studied under complete data settings
although incomplete or missing data are common in longitudinal studies. For example, in clinical trials, missing data are
almost inevitable because subjects may decide to withdraw from the study at anytime prior to completion or subjects are
not compliant to protocol for scheduled assessments. Problems arise if the mechanism leading to the missing data depends
on the response process. It is known that ignoring missing data and using naive methods may introduce bias, reduce the
power of inference and lead to misleading conclusions (Little and Rubin, 2002).

The extension of the SBE to account for incomplete longitudinal data is non-trivial and needs to be addressed to allow this
estimator used inmore general settings. In this paper, we discuss the validity of SBE under differentmissing datamechanism
and modify it for the data missing at random (MAR) with monotone missingness through the inverse probability weighting
(IPW) method. The IPW is a general methodology for constructing parameter estimators in semi-parametric models with
complete as well as missing data (Robins et al., 1995; Yi and Cook, 2002). Another popular approach to deal with missing
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data is the multiple imputation (Rubin, 1987; Schafer, 1997). We also investigate the performance of the SBE using this
strategy.

The structure of the paper is as follows. In Section 2, we introduce and review the missing data mechanism, pattern and
estimation. Section 3 provides details on the proposed weighted simulation-based estimator, and addresses some practical
computational issues. In particular, Section 3.2 handles the data missing completely at random (MCAR), while Section 3.3
focuses on the data MAR. Some simulation studies are conducted in Section 4 to examine the finite sample performance of
the proposed estimator, and concluding remarks are given in Section 5.

2. Missing data framework and notation

2.1. Missing data mechanism

To obtain valid inferences, it is essential to consider the reason for missingness. Let Yij be the jth response for the ith
subject, Ri = (ri1, ri2, . . . , rin)′ be the vector of missing data indicators for Yi = (yi1, . . . , yin)′, such that rij = 1 if response
yij is observed, and 0 otherwise. We partition Yi into YO

i and YM
i , where YO

i contains those yij for which rij = 1 and YM
i

contains the remaining components. Assuming Xi = (xi1, . . . , xin)′ to be a vector of covariates always observed, Little and
Rubin (2002) classified missing data mechanism into three types: (1) MCAR, where the missingness is unrelated to the
responses so that P(Ri|Yi, Xi) = P(Ri|Xi). (2) MAR, where the missingness depends only on the observed responses so that
P(Ri|Yi, Xi) = P(Ri|YO

i , Xi). This is a weaker and more plausible assumption than MCAR. (3) MNAR, where the missingness
depends on both observed and unobserved responses.

2.2. Missing data patterns

There are two broad classes of missing data patterns: intermittent missing and dropout. Intermittent missing pattern
refers to the scenario that a subject completes the study but skips a few occasions in themiddle of the study period. Dropout
(attrition, lost of follow-up) is a particular example of monotone pattern of missingness, which means if one observation
is missing, then all subsequent observations are unobserved. Intermittent missing is often easier to deal with because the
subject is still participating in the study and the reason of missing values can be ascertained. Dropout is more serious be-
cause the subject is no longer available and it is not certain whether the dropout is related to the observed or unobserved
outcome. MARmechanisms are commonly assumedwhen the interest lies on the parameter estimation (Robins et al., 1995;
Lindsey, 2000).

2.3. Estimation of missing data process

Let λij = P(rij = 1|ri,j−1 = 1, Xi, YO
i ) be the conditional probability that subject i is observed at time j, given that the

subject is present at time j−1; andπij = P(rij = 1|Xi, YO
i ) be themarginal probability that subject i is present at time j. Then

πij =
j

t=2 λit . Generally it is assumed that all individuals are observed on the first occasion so that ri1 = λi1 = 1. Further,
let πijk = P(rij = 1, rik = 1|Xi, YO

i ) be the probability of observing both yij and yik given the response history and covariates.
Usually λij is estimated using a logistic regression model logitλij = A′

ijα, where Aij is a vector consisting of information on Xi
and response history, and α is the vector of parameters (Diggle and Kenward, 1994; Fitzmaurice et al., 1996; Molenberghs
et al., 1997; Yi and Cook, 2002).

3. Weighted simulation-based estimator

3.1. GLMM formulation

Suppose subject i is measured repeatedly on ni occasions. In a GLMM it is assumed that, given the covariates and random
effects bi ∈ Rq, the responses yij are conditionally independent and have distribution from the exponential family

f (yij|bi, Xi, Zi) = exp

ωijyij − a(ωij)

φ
+ c(yij, φ)


, i = 1, . . . ,N, j = 1, . . . , ni, (3.1)

where φ is a dispersion parameter, ωij is the canonical parameter and a(·) and c(·) are known functions. The conditional
mean and variance

µc
ij = E(yij|bi, Xi, Zi) = a(1)(ωij) (3.2)

vcij = Var(yij|bi, Xi, Zi) = φa(2)(ωij) (3.3)
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