Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Local perturbations of a Brownian motion are considered. As a limit we obtain a non-

Markov process that behaves as a reflecting Brownian motion on the positive half line until

its local time at zero reaches some exponential level, then changes a sign and behaves as a

reflecting Brownian motion on the negative half line until some stopping time, etc.

On a Brownian motion with a hard membrane

ABSTRACT

Vidyadhar Mandrekar^a, Andrey Pilipenko^{b,*}

^a Michigan State University, East Lansing, USA

^b Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

ARTICLE INFO

Article history: Received 11 September 2015 Received in revised form 9 February 2016 Accepted 11 February 2016 Available online 7 March 2016

MSC: 60F17 60J50 60J55

Keywords: Reflecting Brownian motion Local time Invariance principle

1. Introduction

Consider a sequence of SDEs

$$dX_{\varepsilon}(t) = a_{\varepsilon}(X_{\varepsilon}(t))dt + dw(t), \quad t \ge 0, \ X_{\varepsilon}(0) = x,$$

where w is a Wiener process.

We assume that a_{ε} is an integrable function; this ensures existence and uniqueness of a strong solution to this SDE (Engelbert and Schmidt, 1991, Theorem 4.53).

We also will suppose that the support of a_{ε} is contained in $[-\varepsilon, \varepsilon]$; X_{ε} will be interpreted as a local perturbation of a Brownian motion.

Condition supp $(a_{\varepsilon}) \subset [-\varepsilon, \varepsilon]$ ensures the weak relative compactness in the space of continuous functions of $\{X_{\varepsilon_n}\}$ for any sequence $\varepsilon_n \to 0$ as $n \to \infty$. Indeed, if supp $(a_{\varepsilon}) \subset [-\varepsilon, \varepsilon]$, then it can be seen that $\omega_{X_{\varepsilon}}(\delta) \leq 2\omega_w(\delta) + 2\varepsilon$ for any $\varepsilon > 0, \delta > 0$, where $\omega_g(\delta) = \sup_{s,t \in [0,T]; |s-t| \leq \delta} |g(t) - g(s)|$ is the modulus of continuity (see Lemma 3). The aim of this paper is to discuss possible limits of $\{X_{\varepsilon}\}$ as $\varepsilon \to 0+$.

If $a_{\varepsilon}(x) = \varepsilon^{-1}a(\varepsilon^{-1}x)$, then a_{ε} converges in the generalized sense to $\alpha\delta$, where $\alpha = \int_{\mathbb{R}} a(x)dx$ and δ is the Dirac delta function at 0. In this case (Portenko, 1976, Theorem 8), (Lejay, 2006, Proposition 8) we have convergence in distribution in the space of continuous functions

 $X_{\varepsilon} \Rightarrow w_{\gamma},$

http://dx.doi.org/10.1016/j.spl.2016.02.005 0167-7152/© 2016 Elsevier B.V. All rights reserved.

© 2016 Elsevier B.V. All rights reserved.

(1)

^{*} Corresponding author. E-mail addresses: mandrekar@stt.msu.edu (V. Mandrekar), pilipenko.ay@yandex.ua (A. Pilipenko).

where $\gamma = \tanh \alpha$, w_{γ} is a skew Brownian motion, i.e., a continuous Markov process with transition density

$$p_t(x, y) = \varphi_t(x - y) + \gamma \operatorname{sgn}(y)\varphi_t(|x| + |y|), \quad x, y \in \mathbb{R},$$

 $\varphi_t(x) = \frac{1}{\sqrt{2\pi t}} e^{-x^2/2t}$ is the density of the normal distribution N(0, t).

If $\gamma = 1$ (or $\gamma = -1$), then w_{γ} is a Brownian motion with reflection into the positive (or negative) half-line.

Assume that $sgn(x)a_{\varepsilon}(x) \ge 0$. Then the drift term pushes up when X_{ε} is on the positive half line and pushes down when X_{ε} is on the negative half line. If the limit of sequence $\mathbb{1}_{x\ge 0}a_{\varepsilon}(x)$ as $\varepsilon \to 0+$ is "greater than" delta function, then any limit of X_{ε} cannot cross through zero and consequently the limit will be a reflecting Brownian motion.

Note that the skew Brownian with $|\gamma| < 1$ has both positive and negative excursions in any neighborhood of hitting 0 with probability 1. Reflected Brownian motion ($\gamma = 1$) does not cross zero if it starts from $x \ge 0$; otherwise if x < 0, then it crosses 0 immediately after the hitting. We find a situation when a limit of $\{X_{\varepsilon}\}$ is an intermediate regime between a reflecting case and a skew Brownian motion. The limit process will be a reflecting Brownian motion in some half line until its local time reaches an exponential random variable. Then it behaves as a Brownian motion with reflection into another half line until its local time reaches another independent exponential random variable, etc. We call such process a Brownian motion with a hard membrane. The corresponding definitions are given in Section 2. We prove the general convergence result in Section 3. As an example we discuss in Section 4 the case $a_{\varepsilon}(x) = L_{\varepsilon}\varepsilon^{-1}a(\varepsilon^{-1}x)$, $supp(a) \subset [-1, 1]$, where $L_{\varepsilon} \to \infty$ as $\varepsilon \to 0+$.

The Brownian motion with a hard membrane can be also obtained as a scaling limit of the Lorentz process in a strip with a reflecting wall at the origin that has small shrinking holes (Nandori and Szasz, 2012).

2. Definitions. Reflecting Brownian motion. Brownian motion with a hard membrane

Recall the definition and properties of the Skorokhod reflection problem, see for ex. Pilipenko (2014).

Definition 1. Let $f \in C([0, T]), f(0) \ge 0$. A pair of continuous functions g and l is said to be a solution of the Skorokhod problem for f if

S1. $g(t) \ge 0, t \in [0, T];$ S2. $g(t) = f(t) + l(t), t \in [0, T];$

S3. l(0) = 0, *l* is non-decreasing;

S4. $\int_0^T \mathbb{1}_{g(s)>0} dl(s) = 0.$

It is well known that there exists a unique solution to the Skorokhod problem and the solution is given by the formula

$$l(t) = -\min_{s \in [0,t]} (f(s) \land 0) = \max_{s \in [0,t]} (-f(s) \lor 0),$$
(2)

$$g(t) = f(t) + l(t) = f(t) - \min_{s \in [0,t]} (f(s) \land 0).$$
(3)

We will say that g is a process reflecting into a positive half line and denote it by $f^{refl,+}$.

Remark 1. If f(0) < 0, then we set by definition $f^{refl,+}(t) := f(t)$ until the instant ζ_0 of hitting 0, and $f^{refl,+}(t) := f(t) - \min_{s \in [\zeta_0, t]} f(s)$ for $t \ge \zeta_0$.

The reflection problem with reflection into the negative half line is constructed similarly, g(t) := f(t) - l(t), where *l* is also non-decreasing. In this case denote *g* by $f^{refl,-}$.

Let w(t), $t \ge 0$ be a Brownian motion started at x, $w^{refl,+}$ and $w^{refl,-}$ be reflecting Brownian motions with reflection at 0 into the positive and negative half lines, correspondingly. It is known that the process l(t) is the two-sided local time of $w^{refl,\pm}$ at 0 defined by

$$\lim_{\varepsilon \to 0+} (2\varepsilon)^{-1} \int_0^t \mathbb{1}_{[-\varepsilon,\varepsilon]}(w^{\text{refl},\pm}(s)) ds.$$

Consider two sequences of exponential random variables $\{\xi_k^+\}$ and $\{\xi_k^-\}$ with parameters α^{\pm} , respectively. Suppose that all random variables $\{\xi_k^{\pm}\}$ and the Brownian motion $w(t), t \ge 0$ are mutually independent.

Assume that w(0) = x > 0. The Brownian motion with a hard membrane and parameters of permeability α^{\pm} is constructed in the following way.

$$w^{hard}(t) := w^{refl,+}(t) \quad \text{if } l(t) \le \xi_1^+.$$

At the moment $\zeta_1^+ := \inf\{t \ge 0 \mid l(t) \ge \xi_1^+\}$ the process w^{hard} changes orientation. It reflects into negative half line until the moment when its local time after ζ_1^+ reaches the level ξ_1^- :

$$w^{hard}(t) := w(t) - w(\zeta_1^+) - (l(t) - l(\zeta_1^+)) = w(t) - w(\zeta_1^+) - \max_{s \in [\zeta_1^+, t]} (w(s) - w(\zeta_1^+))$$

for $t \leq \inf\{s \geq \zeta_1^+ : (l(s) - l(\zeta_1^+)) \geq \xi_1^-\} = \inf\{t \geq \zeta_1^+ : \max_{s \in [\zeta_1^+, t]} (w(s) - w(\zeta_1^+)) \geq \xi_1^-\}.$

Download English Version:

https://daneshyari.com/en/article/1151262

Download Persian Version:

https://daneshyari.com/article/1151262

Daneshyari.com