Statistics and Probability Letters 113 (2016) 94-102

Contents lists available at ScienceDirect

STATISTICS &
PROBABILITY
ETTERS,

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

A note on continual reassessment method @ CrossMatk

Tian Tian

Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, USA

ARTICLE INFO ABSTRACT

ArfiCl_e history: A widely used approach in designing the phase I clinical trial is continual reassessment
Received 29 May 2015 method (CRM). In this paper, we prove that under simple power model and logistic model,
Received in revised form 28 February 2016 the way CRM selects the next dose level is highly efficient from the perspective of optimal

Accepted 29 February 2016

Available online 9 March 2016 design. More specifically, for simple power model, we show that the optimal design selects

the dose level such that the corresponding toxicity rate is around 0.2; as for logistic model,
we show that CRM is indeed optimal, which will justify the efficiency of the algorithm in
theory.

Keywords:

Phase I clinical trial
Dose-finding studies
Maximum tolerated dose
Optimal design

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Finding an accurate maximum tolerated dose (MTD), the most efficacious dose whose risk of toxicity is tolerable, is
a critical step in development of medicine. A poor estimation of MTD has a direct negative impact on the subsequent
clinical trial, where over-estimation will induce safety and ethical issues; and under-estimation may make it difficult to
establish adequate efficacy. Thus it is ultra-important to identify MTD accurately. But the vague knowledge of the underlying
characterization of the dose-response relationship makes accurate identification of MTD hard to achieve. The conventional
3 + 3 dose-escalation design, as described by Storer (1989), was among the earliest dose-escalation and de-escalation
schemes utilized. However, some argue that this method of dose escalation may result in a high proportion of patients
being treated at subtherapeutic doses (Simon et al., 1997, O’Quigley et al., 1990).

The continual reassessment method (CRM), first introduced by O'Quigley et al. (1990), is a study design and analytic
method for Phase I clinical trial. The article has proved that CRM has a better performance compared with the traditional
3 4 3 approach under various situations. Since then many modified CRMs have been proposed to address varied raising
criticisms regarding the classical CRM. However, the main structure of all the variations is still based on the CRM proposed
by O’'Quigley et al. (1990). The general idea behind CRM is that a dose-toxicity curve would be fitted to the data and that each
patient would be assigned the dose most likely to be associated with the target toxicity rate, designated as MTD. During the
process, it treats the dose-toxicity curve as a function of d and p, where they represent dose level and toxicity probability,
respectively. Then the function is solved for d, at the target toxicity rate py, which is usually fixed before the study. The
excellent performance of CRM and its variations have been demonstrated through many simulation studies (Garrett-Mayer,
2006). However, little is known as to why CRM strategy is so effective.

The aim of this paper is to answer this question. As mentioned above, the uncertainty of the underlying dose-response
model is a significant obstacle in achieving the goal of determination of the target dose, i.e., the MTD. With more and
more knowledge and experiences in related fields, simple power model (Wages et al., 2011; 0’Quigley and Conaway, 2011;
Piantadosi et al., 1998) and logistic model (Goodman et al., 1995, Piantadosi et al., 1998) have shown themselves to work
well in practice of single-agent dose-finding designs. For simple power model, we show that optimal design selects the dose
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level such that the corresponding toxicity rate is around 0.2, which is exactly the commonly used target toxicity rate. We also
demonstrate that even if the target toxicity rate takes some value other than 0.2, but within a reasonable range (0.1 to 0.35),
CRM strategy is still highly efficient. Moreover, through simulations under varied scenarios, we show that by incorporating
the idea of optimal design into the study, when the target toxicity rate is beyond 0.2, the percentage of toxicity occurrence
in the trial will drop by a great amount. As for logistic model, we prove that CRM approach is indeed optimal, which justifies
the efficiency of CRM theoretically.

The present paper is organized as follows: Some basic concepts about statistical optimal design theory and how it is
related to the CRM setup will be presented in Sections 2-4 will focus on deriving optimal designs for MTD under simple
power model and two-parameter logistic model, respectively; Section 5 provides a brief discussion.

2. About optimal design and its connection to CRM

Design of experiments concerns the way of data collection. An optimal design can reduce the sample size and cost needed
for achieving a specified precision or improve the precision for a given sample size.

In a dose-finding study, a specified total number of observations, n, can be taken at any available dose level, and the
parameters from the dose-response model are to be estimated. The purpose of optimal design here is to select k distinct
dose levels xq, . . ., Xk, and n; observations on each level so that the resulting design is best with respect to some optimality
criterion. Since such problem is in general intractable, the corresponding approximate design, in which njs are replaced by
weight w; = n;j/n,i =1, ...,k is considered. An approximate design can be expressed as:

k
E ={(x1,wy1), ..., (xx, wy)}, where Zwi =1, andx; e X,i=1,...,k.
i=1

In order to identify optimal dose levels and their corresponding weights, one has to consider the effect of dose levels on
the precision of parameter estimates, which is generally reflected by the variance of the estimators. Based on Searle (2012),
the variance-covariance matrix of the maximum likelihood estimator (MLE) of the parameter of interest, say g(6), can be
written as

(agw)) . (agw))T
a0 a0 ’
where [ is the Fisher information matrix. On one hand, an optimal design aims minimizing the variance-covariance matrix
under some optimality criterion; on the other hand, the Fisher information matrices for nonlinear models usually depend on
the unknown parameters. Thus, the challenge in designing an experiment under such situation is that while one is looking
for the best design with the aim of estimating the unknown parameters, one has to know the parameters to identify the best
design. A common approach to tackle this dilemma is to use “locally” optimal design, where it initiates the design process
on the best guess of the unknown parameters (Biedermann and Woods, 2011; Yang, 2010). This approach fits the sequential
design method perfectly: the underlying model is refitted once we have new observed outcomes and optimal design can be
chosen based on the updated parameter values. Therefore, CRM strategy is a sequential approach, which corresponds to the
methodology adopted in a “locally” optimal design. Hereafter, the word “locally” is omitted for simplicity.

Recall that in a CRM-based design, we start with an assumed dose-toxicity curve with the unknown parameter 6, and
a chosen target toxicity rate po. Then the estimated dose-toxicity curve is refitted under Bayesian structure after each
patient’s toxicity outcome is observed. For a given design d, by standard asymptotic theory, the MLE of 8 has approximately
multivariate normal distribution with covariance matrix I=1(6, d). We consider MTD as a function of 6, i.e., MTD = b(6),
then the variance of the estimator of MTD based on 6 can be written as

__ R O\ _, ab@)\"
V(MTD):V(b(@))=<W>I ©, d) <W> .

A design d* minimizing V(I\m) results in an accurate estimation of MTD. This design criterion is justified in the Bayesian
framework: the asymptotic normal distribution of M_"ll) approximates the posterior distribution of the MTD under a Bayesian
structure. Hence, minimizing the log-variance of MTD is equivalent to minimizing the (approximate) Shannon entropy of
the posterior distribution of the MTD (Chaloner and Verdinelli, 1995).

Next, we will study optimal design for simple power model and two-parameter logistic model separately. We denote
response Y to be a binary random variable where 1 indicates patient experiencing dose-limiting toxicity (DLT) and O
otherwise. We also consider X to be the dose level assigned to each entered patient, where its realization x, determined
by the algorithm, will take value from m possible dose levels {d1, ..., d,}. Moreover, p is denoted as the corresponding
toxicity rate for each x.

3. Simple power model
A simple power model is given by

Y, ~Ber(p),  p=ElX=x)=x"" j=1,...n (1)
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