Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/stapro)

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

A randomized version of the Collatz $3x + 1$ problem

Aristides V. Doumas [∗](#page-0-0) , Vassilis G. Papanicolaou

Department of Mathematics, National Technical University of Athens, Zografou Campus, 157 80 Athens, Greece

a r t i c l e i n f o

a b s t r a c t

Article history: Received 1 September 2015 Received in revised form 21 October 2015 Accepted 30 October 2015 Available online 11 November 2015

MSC: 60J10

Keywords: Collatz $3x + 1$ problem Markov chain

1. The Collatz $3x + 1$ **problem**

The classical Collatz 3*x* + 1 Problem can be formulated as follows. Let *x* be a positive odd integer. Consider the sequence

$$
x_0 = x, \qquad x_n = \frac{3x_{n-1} + 1}{2^{d_n}}, \quad n \ge 1,
$$
\n
$$
(1.1)
$$

visits 1 infinitely often. Its values, however, are unbounded.

We consider a Markov chain on the positive odd integers, which can be viewed as a stochastic version of the Collatz 3*x*+1 Problem. We show that, no matter its initial value, the chain

where 2^{d_n} is the highest power of 2 dividing $3x_{n-1} + 1$. Hence $\{x_n\}_{n=0}^\infty$ is a sequence of positive odd integers (if, e.g., $x = 1$, then $x_n = 1$ for all *n*). Notice that $d_n \geq 1$ for all $n \geq 1$.

Suppose $L := \liminf x_n < \infty$. Then, since x_n takes only positive integral values, we must have that $x_n = L$ for infinitely many values of n. In particular, $x_k = x_{k+b} = L$ for some $k \ge 0$, $b \ge 1$. But, then, it follows from [\(1.1\)](#page-0-1) that $x_{k+n} = x_{k+b+n}$ for all integers $n \geq 0$. Therefore, either

$$
\lim_{n} x_n = \infty, \tag{1.2}
$$

or the sequence $\{x_n\}_{n=0}^{\infty}$ is eventually periodic, namely there is a $b \geq 1$ and an $n_0 \geq 0$ such that

$$
x_{n+b} = x_n \quad \text{for all } n \ge n_0. \tag{1.3}
$$

Notice that, if $b = 1$, i.e. if there is a n_0 such that $x_{n+1} = x_n$ for all $n \ge n_0$, then [\(1.1\)](#page-0-1) implies that $(2^{d_{n+1}} - 3)x_n = 1$, which forces $x_n = 1$ for all $n \geq n_0$.

The Collatz 3x + 1 Problem pertains to the behavior of the sequence $\{x_n\}_{n=0}^\infty$ as $n\to\infty$. One famous and longstanding open question is whether there exists some initial value *x* for which $\lim_n x_n = \infty$, while another open question is whether it is possible to have an eventually periodic behavior with a (minimal) period $b > 1$.

The ultimate Collatz Conjecture is that, no matter what the initial value *x* is, we always have that $x_n = 1$ for all *n* sufficiently large. Needless to say that the conjecture has been verified for a huge set of initial values *x*. More information

∗ Corresponding author.

<http://dx.doi.org/10.1016/j.spl.2015.10.017> 0167-7152/© 2015 Elsevier B.V. All rights reserved.

CrossMark

© 2015 Elsevier B.V. All rights reserved.

$$
(1.2)
$$

E-mail addresses: aris.doumas@hotmail.com (A.V. Doumas), papanico@math.ntua.gr (V.G. Papanicolaou).

about the Collatz problem and its ramifications can be found in [Applegate](#page--1-0) [and](#page--1-0) [Lagarias](#page--1-0) [\(2003\)](#page--1-0), [Applegate](#page--1-1) [and](#page--1-1) [Lagarias](#page--1-1) [\(2006\)](#page--1-1), [Borovkov](#page--1-2) [and](#page--1-2) [Pfeifer](#page--1-2) [\(2000\)](#page--1-2), [Crandall](#page--1-3) [\(1978\)](#page--1-3), [Franco](#page--1-4) [and](#page--1-4) [Pomerance](#page--1-4) [\(1995\)](#page--1-4), [Lagarias](#page--1-5) [\(1985\)](#page--1-5), [Lagarias](#page--1-6) [and](#page--1-6) [Weiss](#page--1-6) [\(1992\)](#page--1-6), [Volkov](#page--1-7) [\(2006\)](#page--1-7) and the references therein.

2. A randomized version of the problem

Let *x* be a positive odd integer. We consider the sequence

$$
X_0 = x, \qquad X_n = \frac{3X_{n-1} + \xi_n}{2^{d_n}}, \quad n \ge 1,
$$
\n
$$
(2.1)
$$

where $\{\xi_n\}_{n=1}^\infty$ is a sequence of independent and identically distributed (i.i.d.) random variables taking odd integral values \geq −1, and 2^{d_n} is the highest power of 2 dividing 3X_{n−1} + ξ_n (notice that we again have d_n \geq 1 for all $n \geq$ 1). Thus, {X_n} $_{n=0}^{\infty}$ is now a random sequence of positive odd integers.

Let us introduce the filtration

$$
\mathcal{F}_0 := \{ \emptyset, \Omega \}, \qquad \mathcal{F}_n := \sigma(\xi_1, \dots, \xi_n), \quad n \ge 1,
$$
\n
$$
(2.2)
$$

where (Ω, F , *P*) is the underlying probability space. Clearly, by [\(2.1\)](#page-1-0) we have that the random variables *Xⁿ* and *dⁿ* are \mathcal{F}_n -measurable for all $n \geq 1$. Notice that

$$
\mathcal{F}_n^X := \sigma(X_1, \dots, X_n) \subset \mathcal{F}_n \quad \text{and} \quad \mathcal{F}_n^d := \sigma(d_1, \dots, d_n) \subset \mathcal{F}_n, \quad n \ge 1.
$$
\n
$$
(2.3)
$$

Of course,

$$
\mathcal{F}_n^X \vee \mathcal{F}_n^d = \mathcal{F}_n, \quad n \ge 1,
$$
\n
$$
(2.4)
$$

where $\mathcal{F}_n^X \vee \mathcal{F}_n^d$ denotes the σ -algebra generated by \mathcal{F}_n^X and \mathcal{F}_n^d .

Formula (2.1) implies that $\{X_n\}_{n=0}^\infty$ is a Markov chain with respect to \mathcal{F}_n , whose state space is the set $\mathbb{N}_{\rm odd}$ of positive odd integers. Actually, the two-dimensional process $\{(X_n, d_n)\}_{n=0}^\infty$ can be also viewed as a Markov chain with respect to \mathcal{F}_n (the value of d_0 is irrelevant; furthermore, conditioning on d_n is irrelevant for (X_{n+1}, d_{n+1})).

The most natural case to examine first seems to be the choice $P\{\xi_n=-1\}=P\{\xi_n=1\}=1/2$ (or $P\{\xi_n=1\}=P\{\xi_n=1\}=1/2$ 3 } = 1/2). Here, however, we will consider the rather easier case

$$
P\{\xi_n = 1\} = P\{\xi_n = 3\} = P\{\xi_n = 5\} = P\{\xi_n = 7\} = \frac{1}{4}.
$$
\n(2.5)

To begin our analysis, let us observe that for any positive odd integral value of *Xn*−¹ we have

$$
\{3X_{n-1} + 1, 3X_{n-1} + 3, 3X_{n-1} + 5, 3X_{n-1} + 7\} \equiv \{0, 2, 4, 6\} \mod 8. \tag{2.6}
$$

Therefore, due to [\(2.5\)](#page-1-1) and the independence of X_{n-1} and ξ_n we have

$$
P\{3X_{n-1} + \xi_n \equiv k \mod 8\} = \frac{1}{4} \quad \text{for } k = 0, 2, 4, 6. \tag{2.7}
$$

The above formula motivates us to set

$$
m_n := 3 \wedge d_n, \quad n \ge 1 \tag{2.8}
$$

(as usual, $a \wedge b$ denotes the minimum of *a* and *b*), where d_n is the random exponent appearing in [\(2.1\).](#page-1-0) Then, [\(2.1\),](#page-1-0) [\(2.7\),](#page-1-2) the Markov property of (X_n, d_n) , and the independence of X_{n-1} and ξ_n imply

$$
P\{m_n = 1 \mid \mathcal{F}_{n-1}\} = P\{m_n = 1 \mid X_{n-1}\} = P\{3X_{n-1} + \xi_n \equiv 2 \mod 4 \mid X_{n-1}\} = \frac{1}{2}
$$
(2.9)

for all $n \geq 1$. Likewise,

$$
P\{m_n = 2 \mid \mathcal{F}_{n-1}\} = P\{m_n = 3 \mid \mathcal{F}_{n-1}\} = \frac{1}{4}, \quad n \ge 1.
$$
\n(2.10)

Formulas [\(2.9\)](#page-1-3) and [\(2.10\)](#page-1-4) tell us that m_n and \mathcal{F}_{n-1} are independent for every $n \geq 1$. In particular (since m_n is \mathcal{F}_n -measurable for all $n \geq 1$) we have that ${m_n}_{n=1}^{\infty}$ is a sequence of i.i.d. random variables with

$$
P\{m_n = 1\} = \frac{1}{2}, \qquad P\{m_n = 2\} = P\{m_n = 3\} = \frac{1}{4}.
$$
\n(2.11)

Download English Version:

<https://daneshyari.com/en/article/1151314>

Download Persian Version:

<https://daneshyari.com/article/1151314>

[Daneshyari.com](https://daneshyari.com)