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h i g h l i g h t s

• Linear contrasts between means are dealt with for the first time as objective Bayesian model selection problems.
• A specific solution for the homoscedastic case is proposed.
• The p-value and the posterior probability of the null hypothesis are compared through calibration curves.
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a b s t r a c t

Linear contrasts between means for the one way analysis of variance are studied for the
first time as objectivemodel selection problems. For it, Bayes factors for intrinsic priors are
used and classical and Bayesian measures of evidence are compared.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let us consider k normal populationsN(x1|µ1, σ
2
1 ), . . . ,N(xk|µk, σ

2
k ) and independent samples, xi = (xi1, . . . , xini), from

each population i = 1, . . . , k. When the hypothesis of equality of means is rejected an analysis of certain linear contrasts
between the means may be of interest. In the frequentist methodology there are several exact tests dealing with this topic,
the methods of Scheffé and Tukey are the most commonly used in the homoscedastic case; however, just asymptotic
solutions like the Welch’s test or the Hotelling’s test are obtained when heteroscedasticity is present. The first objective
in this paper is to go one step further than in Cano et al. (2013), where the homoscedastic case for the one way ANOVA
was dealt with using the intrinsic priors methodology. Here we solve as a model selection problem, linear contrasts like the
following

H0 : ϕ = 0 versus H1 : ϕ ≠ 0, (1)
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where ϕ =
k

i=1 aiµi, with
k

i=1 ai = 0 and at least one ai ≠ 0. This interesting classical problem is treated here for the
first time as an objective Bayesian model selection one, note that in Box and Tiao (1973) it was dealt with from a Bayesian
estimation point of view. In Cano et al. (2013) we argue why this type of problems are better treated from a Bayesian model
selection perspective. For it, because Bayes factors for improper noninformative priors are undefined we propose Bayes
factors based on the intrinsic methodology. See Berger and Pericchi (1996), Moreno et al. (1998), and Bertolino et al. (2000),
where contrasts are briefly discussed as estimation problems. The case of large k is not dealt with as it is behind the scope
of this paper.

The second objective is to compare the Bayesian measure of evidence, the posterior probability of the null hypothesis,
y, with the frequentist one, the p-value, p. Calibration is a simple means of establishing that comparison, see Girón et al.
(2006). We state in this paper that in linear contrasts the posterior probability of the null hypothesis depends on the sample
through sufficient statistics and the sample size, and the same is true for the p-value. That is,

y = P(H0|x, s2,n), (2)

p = PH0(T ≥ t(x, s2,n)), (3)

where T is the contrast and t is its observed value, x = (x1, . . . , xk), s2 = (s21, . . . , s
2
k) and s2i =

ni
j=1(xij −xi)2; therefore we

can define different calibration curves varying in (2) and (3) one of the sample means in an interval. Note that the posterior
probability of the null hypothesis has been computed using the prior p1 = p2 = 1/2 for the hypotheses H0 and H1 and the
p-values are the corresponding to the Scheffé test in the homoscedastic case and to the Welch test in the heteroscedastic
one.

The paper is organized as follows. In Section 2 linear contrasts between means for homoscedastic populations are
considered using the intrinsic priors methodology. In Cano et al. (2013) it is argued that it was necessary to study the
case when homoscedasticity is present, since in this case a specific method can be used, similarly to what happens in the
frequentist analysis.

In Section 3 Bayes factors for intrinsic priors are obtained for linear contrasts in the heteroscedastic case. The key idea to
develop Sections 2 and 3 was to find a reparameterization allowing to formulate linear contrasts as nested Bayesian model
selection problems forwhich the intrinsicmethodology behaves satisfactorily, see Girón et al. (2006) and references therein.
This provides us exact solutions even for the heteroscedastic case.

In Section 4 we illustrate the behavior of the calibration curves as the sample size of the involved populations increases.
Finally, in Section 5 we briefly summarize the obtained results and we give some concluding remarks.

2. Linear contrasts between means for homoscedastic populations

In this section we consider k normal populations with unknown common variance σ 2 and we want to solve linear
contrasts as (1) where, without loss of generality, we assume that a1 ≠ 0. The null hypotheses introduce a constraint
on the parameters and considering the reparameterization

ϕ1 =

k
i=1

aiµi, ϕ2 = µ2, . . . , ϕk = µk, (4)

the linear contrast (1) can be expressed as a nested Bayesian model selection problem where the simple modelM1,

f1(z|θ1) = Nn1


x1




k
i=2

diβi


1n1 , τ

2In1


k

i=2

Nni(xi|βi1ni , τ
2Ini),

with the prior

πN
1 (θ1) =

c1
τ

, (5)

is compared with the complex modelM2

f2(z|θ2) =

k
i=1

Nni


xi|ϕi1ni , σ

2Ini

,

with the prior

πN
2 (θ2) =

c2
σ

, (6)

where z = (x1, . . . , xk), θ1 = (β2, . . . , βk, τ ), θ2 = (ϕ1, . . . , ϕk, σ ) and di = −ai/a1 for i = 2, . . . , k. Note that just (k − 1)
means, β2, . . . , βk, have been left in modelM1 because of the constraint on the parameters.

To assign default priors we have always assumed that location and scale parameters are a priori independent, see Jeffreys
(1961).
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