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a b s t r a c t

Given a random vector (X, Z), we define a notion of nonparametric residual of X on Z that
is always independent of Z. Given (X, Y , Z), we use this notion of residual to develop a test
for the conditional independence between X and Y , given Z.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let (X, Z) be a random vector in R × Rd
= Rd+1, d ≥ 1. We assume that (X, Z) has a joint density on Rd+1. If we want to

predict X using Z we usually formulate the following regression problem:

X = m(Z) + ϵ, (1.1)

wherem(z) = E(X |Z = z) is the conditional mean of X given Z = z and ϵ := X −m(Z) is the residual (although ϵ is usually
called the error, and its estimate the residual, for this paper we feel that the term residual is more appropriate). Typically
we further assume that the residual ϵ is independent of Z. However, intuitively, we are just trying to break the information
in (X, Z) into two parts: a part that contains all relevant information about X , and the ‘‘residual’’ (the left over) which does
not have anything to do with the relationship between X and Z.

In this paper we address the following question: given any random vector (X, Z) how do we define the notion of a
‘‘residual’’ of X on Z that matches with the above intuition? Thus, formally, we want to find a function ϕ : Rd+1

→ R
such that the residual ϕ(X, Z) satisfies the following two conditions:

(C.1) The residual ϕ(X, Z) is independent of the predictor Z, i.e. , ϕ(X, Z)yZ.
(C.2) The information content of (X, Z) is the same as that of (ϕ(X, Z), Z), i.e.,

σ(X, Z) = σ(ϕ(X, Z), Z), (1.2)

where σ(X, Z) denotes the σ -field generated by X and Z. We can also express (1.2) as: there exists a measurable
function h : Rd+1

→ R such that

X = h(Z, ϕ(X, Z)); (1.3)

see e.g., Theorem 20.1 of Billingsley (1995).
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In this paper we propose a notion of a residual that satisfies the above two conditions, under any joint distribution of X
and Z. We investigate the properties of this notion of residual in Section 2. We show that this notion indeed reduces to the
usual residual (error) in the multivariate normal regression model. Further, we use this notion of residual to develop a test
for conditional independence.

Suppose now that (X, Y , Z) has a joint density on R × R × Rd
= Rd+2. The assumption of conditional independence

means that X is independent of Y given Z, i.e., XyY |Z. Conditional independence is an important concept in modeling causal
relations (Dawid, 1979; Pearl, 2009), in graphical models (Lauritzen, 1996), and in economic theory (see Chiappori and
Salanié, 2000) among other fields. Traditional methods for testing conditional independence are either restricted to the
discrete case or impose simplifying assumption when the random variables are continuous. However, recently there has
been a few nonparametric testing procedures proposed for testing conditional independencewithout assuming a functional
form between the distributions of X, Y , and Z. Su andWhite (2008) use the Hellinger distance between conditional densities
of X given Y and Z, and X given Y to test for conditional independence. A test based on estimation of the maximal nonlinear
conditional correlation is proposed in Huang (2010). Bergsma (2011) develops a test based on partial copula. Fukumizu
et al. (2007) propose a measure of conditional dependence of random variables, based on normalized cross-covariance
operators on reproducing kernel Hilbert spaces; Zhang et al. (2012) propose another kernel-based conditional independence
test. Poczos and Schneider (2012) extend the concept of distance correlation (developed by Székely et al., 2007 to measure
dependence between two random vectors) to characterize conditional dependence; also see Székely and Rizzo (2014) and
Györfi and Walk (2012) and the references therein.

In Section 3 we use the notion of residual defined in Section 2 to develop a test for the conditional independence
between X and Y given Z. We first show that the conditional independence between X and Y given Z is equivalent to
the mutual independence of three random vectors: the residuals of X on Z and Y on Z, and Z. We reduce the testing of
mutual independence to a one sample multivariate goodness-of-fit test. We further propose a modification of the easy-to-
implement energy statistic based method (Székely and Rizzo, 2005; also see Székely and Rizzo, 2013) to test the goodness-
of-fit; see Section 3.1. In Section 3.2 we use our notion of nonparametric residual and the proposed goodness-of-fit test
to check the null hypothesis of conditional independence. Moreover, we describe a bootstrap scheme to approximate the
critical value of this test. We endwith a brief discussion in Section 4where we point to some open research problems. In the
accompanying online supplementary material (see Appendix A), we give the proofs of the results stated in the paper and
compare the finite sample performance of the proposed procedure with other available methods in the literature.

2. A nonparametric notion of residual

Conditions (C.1)–(C.2) do not necessarily lead to a unique choice for ϕ. To find a meaningful and unique function ϕ that
satisfies conditions (C.1)–(C.2) we impose the following natural restrictions on ϕ. We assume that

(C.3) x → ϕ(x, z) is strictly increasing in its support, for every fixed z ∈ Rd.

Note that condition (C.3) is a strengthening of condition (C.2). Suppose that a function ϕ satisfies conditions (C.1) and (C.3).
Then any strictly monotone transformation of ϕ(·, z) would again satisfy (C.1) and (C.3). Thus, conditions (C.1) and (C.3) do
not uniquely specify ϕ. To handle this identifiability issue, we replace condition (C.1) with (C.4), described below.

First observe that, by condition (C.1), the conditional distribution of the random variable ϕ(X, Z) given Z = z does not
depend on z. We assume that

(C.4) ϕ(X, Z)|Z = z ∼ U(0, 1) for all z ∈ Rd,

where U(0, 1) denotes the uniform distribution on (0, 1). Condition (C.4) is again quite natural—we usually assume that
the residual has a fixed distribution, e.g., in regression we assume that the (standardized) residual in normally distributed
with zero mean and unit variance. Note that condition (C.4) is slightly stronger than (C.1) and will help us uniquely identify
ϕ. The following result (proved in Section 9 of the online supplementary material) shows that, indeed, under conditions
(C.3)–(C.4), a unique ϕ exists and gives its form.

Lemma 2.1. Let FX |Z(·|z) denote the conditional distribution function of X |Z = z. Under conditions (C.3) and (C.4), we have a
unique choice of ϕ(x, z), given by ϕ(x, z) = FX |Z(x|z). Also, h(z, u) (see (C.2)) can be taken as

h(z, u) = F−1
X |Z(u|z). (2.1)

Thus from the above lemma, we conclude that in the nonparametric setup, if we want to have a notion of a residual
satisfying conditions (C.3)–(C.4) then the residual has to be FX |Z(X |Z). The following remarks are in order now.

Remark 2.2. From the proof of Lemma 2.1 it can be seen that for continuous random variables there always exists a notion
of residual ϕ(x, z) = FX |Z(x|z) which satisfies conditions (C.1) and (C.2). However without conditions (C.3) and (C.4) we
cannot guarantee its uniqueness.
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