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a b s t r a c t

This article extends linear quantile regression to an elliptical multiple-output regression
setup. The definition of the proposed concept leads to a convex optimization problem. Its
elementary properties, and the consistency of its sample counterpart, are investigated. An
empirical application is provided.
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1. Introduction

Due to their close relation to location and scatter, and their central role in the geometry of Gaussian and elliptical
distributions, ellipsoids and the related Mahalanobis distances are quite logical tools for the statistical analysis of
multivariate data. Quite naturally, thus, ellipsoids have been considered in the definition of multivariate quantiles and
related concepts.

A definition of elliptical multivariate quantiles has been proposed by Hlubinka and Šiman (2013), which leads to a
convex optimization problem, hence to a unique solution. That concept essentially dealswith location, although itsweighted
version, based on covariate-driven weights, allows, in the presence of covariates, for a local constant regression extension.
In the location case (when no covariates are available), Hlubinka and Šiman (2015) consider a more general nonlinear
definition, leading to non-convex optimization. The uniqueness of the resulting quantile, therefore, is problematic.

This paper, inspired by Koenker and Bassett (1978), presents a linear multiple-output quantile regression extension of
Hlubinka and Šiman (2013), and shows that it leads to a convex optimization problem with a uniquely defined solution for
all multivariate continuous distributions with finite second-order moments and connected support, including those with
multimodal densities that often arise in the context of mixtures (see, e.g., Došlá, 2009).
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Section 2 presents the new concept, Sections 3 and 4 investigate its main properties in the population case and in the
sample case, and Section 5 briefly illustrates it with a real data application.

2. Definition

Let τ ∈ (0, 1) and consider an m-dimensional response vector Y associated with a (p + 1)-dimensional vector of
regressors (1, Z ′)′. Throughout, it is assumed that the joint distribution of (Y ′, Z ′)′ is absolutely continuous, with connected
support and finite second-order moments.

In the location case (when p = 0), Hlubinka and Šiman (2013) define the multivariate (location) elliptical τ -quantile as
the ellipsoid

εloc
τ = εloc

τ (Y ) := {y ∈ Rm
: y ′Aτy + y ′bτ − cτ = 0},

where Aτ ∈ Rm×m, bτ ∈ Rm×1, and cτ > 0 minimize, subject to A being symmetric and positive semidefinite with
determinant one (A is thus a shape matrix in the sense of Paindaveine (2008)), the objective function

Ψ loc
τ (A, b, c) := E ρτ (Y ′AY + Y ′b − c)

with the usual check function ρτ (x) := x(τ − I(x < 0)) = max{(τ − 1)x, τx}. The positive semidefiniteness of A
and the condition on its determinant ensure that εloc

τ is indeed an ellipsoid, centered at sτ := −A−1
τ bτ/2, with equation

(y − sτ )′Aτ (y − sτ ) = κτ , where κτ := cτ + b′
τ A−1

τ bτ/4. The condition det(A) = 1 can be viewed as an identification
constraint: for any K > 0, the triples (A, b, c) and (KA, Kb, Kc) indeed define the same ellipsoid.

The same definition can be reformulated as a convex optimization problem by relaxing the constraint det(A) = 1 into
(det(A))1/m ≥ 1: the function A → (det(A))1/m, unlike A → det(A), is concave on the cone of symmetric positive
semidefinite matrices (see, e.g., Šilhavı, 2008), and the fact that Ψ loc

τ (KA, Kb, Kc) = KΨ loc
τ (A, b, c) for any K > 0 implies

that the optimal Aτ is such that (det(Aτ ))
1/m

= det(Aτ ) = 1 (see Section 2 of Hlubinka and Šiman, 2013, where alternative
identification constraints are also discussed).

In the presence of covariates (that is, when p > 1), the traditional homoscedastic multiple-output linear regression
model suggests, for an elliptical multiple-output regression τ -quantile, a simple equation of the form

(y − β − Bz)′Aτ (y − β − Bz) − γ = 0

with some A ∈ Rm×m, β ∈ Rm×1, B ∈ Rm×p, and γ > 0. The trouble is that the corresponding objective function

E ρτ


(Y − β − BZ)′A(Y − β − BZ) − γ


is not convex in β and B, so that its minimization with respect to A, β, B, and γ is not a convex optimization problem. And
the same could be said even if γ were an affine linear function of z .

In order to restore convexity, consider instead the more general definition

εreg
τ := {(y ′, z ′)′ ∈ Rm+p

: (y − βτ − Bτ z)′Aτ (y − βτ − Bτ z) − (γτ + c ′

τ z + z ′Cz) = 0} (1)

of an elliptical regression quantile εreg
τ = εreg

τ (Y , Z), where a quadratic form of covariate-driven scale is allowed, and
Aτ , βτ , Bτ , γτ , cτ , and Cτ jointly minimize

Ψ reg
τ := E ρτ


(Y − β − BZ)′A(Y − β − BZ) − (γ + c ′Z + Z ′CZ)


under the constraint that C ∈ Rp×p is symmetric and A ∈ Rm×m is symmetric positive semidefinite with det(A) = 1. This
minimization, however, still does not take the form of a convex optimization problem.

Let therefore M := (M1, . . . , M6), with M1
:= A ∈ Rm×m symmetric positive semidefinite, M2

:= B′AB − C ∈ Rp×p

symmetric, M3
:= −2B′A ∈ Rp×m, M4

:= −2β′A ∈ R1×m, M5
:= 2β′AB − c ′

∈ R1×p, and M6
:= β′Aβ − γ ∈ R. The

correspondence between M and (A, β, B, γ , c, C) is one-to-one, with A = M1, β = −
1
2M1−1M4′, B = −

1
2M1−1M3′,

γ =
1
4M4M1−1M4′

− M6, c =
1
2M3M1−1M4′

− M5′, and C =
1
4M3M1−1M3′

− M2: M thus provides a reparametrization of
the problem.

In this new parametrization, the elliptical regression quantile εreg
τ can be expressed as

εreg
τ = {(y ′, z ′)′ ∈ Rm+p

: r(y, z, Mτ ) = 0}

where

r(y, z, M) := y ′M1y + z ′M2z + z ′M3y + M4y + M5z + M6

= (y − β − Bz)′A(y − β − Bz) − (γ + c ′z + z ′Cz),

and Mτ := (M1
τ , . . . , M6

τ ) jointly minimize

Ψ reg
τ = Ψ reg

τ (M) := Ψ reg
τ (M1, . . . , M6) = E ρτ


r(Y , Z, M)


,
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