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1. Introduction

Due to their close relation to location and scatter, and their central role in the geometry of Gaussian and elliptical
distributions, ellipsoids and the related Mahalanobis distances are quite logical tools for the statistical analysis of
multivariate data. Quite naturally, thus, ellipsoids have been considered in the definition of multivariate quantiles and
related concepts.

A definition of elliptical multivariate quantiles has been proposed by Hlubinka and Siman (2013), which leads to a
convex optimization problem, hence to a unique solution. That concept essentially deals with location, although its weighted
version, based on covariate-driven weights, allows, in the presence of covariates, for a local constant regression extension.
In the location case (when no covariates are available), Hlubinka and Siman (2015) consider a more general nonlinear
definition, leading to non-convex optimization. The uniqueness of the resulting quantile, therefore, is problematic.

This paper, inspired by Koenker and Bassett (1978), presents a linear multiple-output quantile regression extension of
Hlubinka and Siman (2013), and shows that it leads to a convex optimization problem with a uniquely defined solution for
all multivariate continuous distributions with finite second-order moments and connected support, including those with
multimodal densities that often arise in the context of mixtures (see, e.g., Dosla, 2009).
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Section 2 presents the new concept, Sections 3 and 4 investigate its main properties in the population case and in the
sample case, and Section 5 briefly illustrates it with a real data application.

2. Definition

Let T € (0, 1) and consider an m-dimensional response vector Y associated with a (p + 1)-dimensional vector of
regressors (1, Z")’. Throughout, it is assumed that the joint distribution of (Y’, Z’)’ is absolutely continuous, with connected
support and finite second-order moments.

In the location case (when p = 0), Hlubinka and Siman (2013) define the multivariate (location) elliptical r-quantile as
the ellipsoid

e = e (Y) == {y € R" :y'Ay +¥'br — ¢ =0},

where A, € R™™ b, € R™! and ¢; > 0 minimize, subject to A being symmetric and positive semidefinite with
determinant one (A is thus a shape matrix in the sense of Paindaveine (2008)), the objective function

WA, b, ¢) = E p. (YAY + Y'b — C)

with the usual check function p,(x) := x(t — I(x < 0)) = max{(r — 1)x, tx}. The positive semidefiniteness of A
and the condition on its determinant ensure that ¢! is indeed an ellipsoid, centered at s, := —A;'b, /2, with equation
¥ —s)A(y —s;) = Kk, where k; = ¢; + b;Afb, /4. The condition det(A) = 1 can be viewed as an identification
constraint: for any K > 0, the triples (A, b, ¢) and (KA, Kb, Kc) indeed define the same ellipsoid.

The same definition can be reformulated as a convex optimization problem by relaxing the constraint det(A) = 1 into
(det(A))/™ > 1: the function A — (det(A))"™, unlike A — det(A), is concave on the cone of symmetric positive
semidefinite matrices (see, e.g., Silhavi, 2008), and the fact that W°°(KA, Kb, Kc) = K¥°¢(A, b, ¢) for any K > 0 implies
that the optimal A, is such that (det(4,;))"/™ = det(A,) = 1(see Section 2 of Hlubinka and Siman, 2013, where alternative
identification constraints are also discussed).

In the presence of covariates (that is, when p > 1), the traditional homoscedastic multiple-output linear regression
model suggests, for an elliptical multiple-output regression t-quantile, a simple equation of the form

y—-B-B2)A(y—B-—Bz)—y =0
with some A € R™™, B ¢ R™! B € R™P and y > 0.The trouble is that the corresponding objective function
Ep:((Y = B—BZ)A(Y — B—BZ) —y)

is not convex in B and B, so that its minimization with respect to A, 8, B, and y is not a convex optimization problem. And
the same could be said even if y were an affine linear function of z.
In order to restore convexity, consider instead the more general definition

£ = (v, 2) €R™P: (y — B, — B2 A (y — B, — Bez) — (v, + €z +2'C2) = 0) (1)

of an elliptical regression quantile £;®* = &7*8(Y, Z), where a quadratic form of covariate-driven scale is allowed, and
A, B,.B;, ¥¢, ¢;, and C, jointly minimize

w8 :=Ep,((Y — B—BZ)A(Y — B—BZ) — (y + CZ+Z'CZ))

under the constraint that C € RP*P is symmetric and A € R™™ is symmetric positive semidefinite with det(A) = 1. This
minimization, however, still does not take the form of a convex optimization problem.

Let therefore M := (M', ..., M®), with M! := A € R™™ symmetric positive semidefinite, M? := B'AB — C € RP*?
symmetric, M® = —2B'A € RP”>™ M* := —28'A € R>*™ M° := 28'AB — ¢’ € R*P,and M°® := B'AB — y € R.The
correspondence between M and (A, B, B, y, ¢, C) is one-to-one, with A = M', 8 = —%M1_]M4/, B = —%M1_1M3',

y = %M“MlqM“/ —MS, ¢ = %M3M171M4/ —M*,and C = %M3M171M3' — M?: M thus provides a reparametrization of
the problem.
In this new parametrization, the elliptical regression quantile ¢ can be expressed as

et ={@y,2')Y e R™P :r(y,z,M;) =0}
where
ry,z, M) = yM'y + zM?z + zM%y + M*y + M°z + M°®
=(y—B—Bz)Aly — B—Bz) — (y + 'z +2/Cz),
and M, := (M, ..., M®) jointly minimize

W = PIB(M) = ¢E(M, ..., M®) = Ep.(r(Y, Z, M),
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