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a b s t r a c t

Recently, some nonparametric regression ideas have been extended to the functional
context, allowing infinite-dimensional regressors. This paper gives a deep asymptotic study
of the functional Nadaraya–Watson estimator, including moments of all orders, errors,
asymptotic distribution and large deviation rate.
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1. Introduction

Consider a functional variable X , that is a random variable taking on values in some infinite-dimensional space. For
instance, X can be a random function or a continuous time stochastic process, but many other types of random elements
can be considered as ‘functional’. The study of this kind of variable has become an important research field of statistics since
the recent technological progress inmeasuring devices now allows us to observe spatio-temporal phenomena on arbitrarily
fine grids,while their limits previously imposed to discretise any such phenomenon. See Ramsay and Silverman (2002, 2005)
for a first review of functional data analysis. In this context, a problem of particular interest is the functional regression (also
known as ‘scalar-on-function regression’), which aims at linking a real response, say Y , to the functional regressor X , as it
is often required in numerous and various applications. This has been the case in medicine (Ratcliffe et al., 2002; Reiss and
Ogden, 2010; Goldsmith et al., 2011; Huang et al., 2013), chemometrics (Goutis, 1998; Marx and Eilers, 1999; Ferraty et al.,
2010a), climatology (Ferraty et al., 2005; Baíllo and Grané, 2009), and many others.

The first methods proposed to tackle this problemwere essentially based on parametric assumptions (e.g. the functional
linearmodel, as in Ramsay and Silverman (2005), Cardot et al. (1999), Fan and Zhang (2000) or Hall andHorowitz (2007) a.o.,
or the generalised functional linear model, as in James (2002) or Müller and Stadtmüller (2005)). Following some pioneer
papers, the monographs of Ferraty and Vieu (2006) and Ferraty and Romain (2011) have, however, popularised the classical
nonparametric regression model in the case of a functional regressor. Formally, this model is written

Y = µ(X ) + ε, (1.1)

where Y ∈ R, X is assumed to belong to some semi-metric functional space (S, ((·))), µ is some unknown operator from
S → R satisfying mild regularity conditions and ε is some random disturbance such that E(ε|X ) = 0 almost surely. This
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kind of nonparametric model totally avoids any hazardous rigid parametric assumption on µ. In fact, it is very difficult to
figure out how this operator behaves on its infinite-dimensional support. Indeed, although some attempts at extending to
the functional framework the usual regression visual tools, such as scatter-plots or residual plots, have been reported in
the literature, those typically remain hard to handle and interpret. This leads to an increased risk of model misspecification
compared to usual parametric modelling. By contrast, model (1.1) is as flexible as can be, hence its usefulness.

Note thatworking in a semi-metric space allows one to consider a broader range of topologies associated to the functional
space. In particular, the ‘classical’ functional metric spaces (Hilbert or Banach) endowed with one of their ‘usual’ norm, for

instance the space L2
[0,1] endowed with the L2-norm ∥χ∥2 =

 1
0 χ2(t)dt

1/2
, obviously enter the definition of a semi-

metric space, but using a genuine semi-norm often leads to interesting results. For example, using some ‘projection type’
semi-metricmay reduce the impact of the so-called ‘curse of infinite dimensionality’, see Ferraty andVieu (2006, Chapter 13)
and comments in Geenens (2011).

The estimation of µ from a sample of i.i.d. replications of (X , Y ), say {(Xk, Yk), k = 1, . . . , n}, is of main interest. For
any fixed χ ∈ S , this operator is such that µ(χ) = E(Y |X = χ), and therefore captures most of the effect of the regressor
on the response. The basic nonparametric regression estimator, the so-called Nadaraya–Watson estimator from Nadaraya
(1964) and Watson (1964), can readily be generalised to the functional regressor case, and is given by

µ̂(χ) =

n
k=1

K(((χ − Xk))/h)Yk

n
k=1

K(((χ − Xk))/h)
, (1.2)

with K a kernel function from [0, 1] to R and h a bandwidth. Since it has been introduced, this estimator has been subject
to many studies, both theoretical and practical. In addition to the rates of convergence derived in Ferraty and Vieu (2006)
and Masry (2005) established its asymptotic normality, while Ferraty et al. (2007) derived explicit expressions for its bias
and its variance if ((·)) is a norm. See also Ferraty et al. (2006), Rachdi and Vieu (2007) and Burba et al. (2009), for related
problems.

Actually, it turns out that a key element of all those results is the ‘small ball probability’ associated to the random process
X and the semi-norm ((·)) at χ , i.e.

φχ (h) .
= P (((X − χ)) ≤ h) . (1.3)

The behaviour of this functionwhen hdecreases to zero plays the central role in the theoretical developments, as it quantifies
how densely packed the data may be in the considered space with the given topology. Nevertheless, it is out of the scope of
this paper to discuss the decay rate of φχ (h) with respect to X and ((·)) (which is done e.g. in Ferraty et al. (2006, section 5)),
and our resultswill be stated in terms ofφχ (h). In particular, the results stated in the above references imply that the optimal
bandwidth, in the sense of minimum asymptotic mean squared error of the estimator (1.2), is such that

h ∼ (nφχ (h))−1/2. (1.4)

Throughout the paper, we consider the case where ((·)) is a general semi-norm (therefore including norms). Similarly to
Geenens (2014) in the vectorial context, we derive in Section 2 explicit expressions of any moment of µ̂(χ) of type

E

(µ̂(χ) − µ(χ))γ


(1.5)

for any positive integer γ , and deduce expressions for the ensuing centred moments

E

(µ̂(χ) − E(µ̂(χ)))γ


and absolute moments

E

|µ̂(χ) − µ(χ)|γ


,

that is Lγ -errors. Also, interesting observations and consequences are drawn from those results in terms of asymptotic
normality and large deviation probability of the estimator. By doing so, this work complements the results of Masry (2005)
and Ferraty et al. (2007) and provides new tools to future applied and theoretical studies involving the considered estimator.

2. Main results

2.1. Assumptions and notations

Consider the following case:

Assumption 1. The sample {(Xk, Yk), k = 1, . . . , n} is made up of independent replications of (X , Y ) ∈ S × R, such that
E(Y |X = χ) = µ(χ).
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