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a b s t r a c t

We introduce a new constant by L1-Poincaré inequality which lies between the classical
L2-Poincaré constant andDobrushin coefficient.Meanwhile, the bounds for the L1-Poincaré
constant are obtained by using Cheeger’s technique.
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1. Introduction

Consider a discrete time Markov chain {Xn : n ≥ 0} on a finite or countably infinite state space E. Let P be the transition
probability matrix (or Markov Kernel) of Xn. And suppose that the Markov chain has a reversible probability µ. That is,

P(x, y) ≥ 0, for all x, y ∈ E, and

y∈E

P(x, y) = 1, for all x ∈ E.

µ(x)P(x, y) = µ(y)P(y, x), for any x, y ∈ E.

We assume throughout this article that P is irreducible.
As we know that ergodicity has been one of the research focuses of Markov processes. Using functional inequalities

is one of effective ways to study ergodicity of Markov process (Deng and Song, 2012; Wuebker, 2012). It is well known
that the classical L2-Poincaré inequality is equivalent to exponential convergence of associated Markov semigroups, see
references Bakry (2002), Chen (1996), Chen and Wang (2000) and Chen (2004). Although the relationship between the L1-
Poincaré inequality and the convergence rate of Markov chain is not clear, research about L1-Poincaré inequality for Markov
chain is still significant. Usually, the problem of inequality under the L1 norm is often translated into a L2 norm problem
by using the Cauchy–Schwarz inequality (Diaconis, 2009; Saloff-Coste, 2004). Wang directly studied L1-Poincaré inequality
inWang (2012) for continuous timeMarkov processes. However, the tools which are used in continuous time cases may not
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be useful in discrete time cases. Thus, exploring a new method to study L1-Poincaré inequality for Markov chain in discrete
time cases becomes important.

In this article, we introduce a new constant by L1-Poincaré inequality which lies between the classical L2-Poincaré
constant and Dobrushin coefficient, which is always used to describe strong ergodicity of discrete time Markov chain
(Anderson, 1991). And we obtain the estimation of optimal constant in L1-Poincaré inequality by using Cheeger’s technique
and segmentation technique.

The definition of Lk-Poincaré inequality is following:

Definition 1.1. For k = 1, 2, we say that the Lk-Poincaré inequality of P holds if there exists a constant 0 < Ck < 1 such
that for all f with µ(f ) = 0, the following inequality holds

µ(|Pf |k) ≤ Ckµ(|f |k).

For k = 1, 2, we will denote by rk the optimal constant in Lk-Poincaré inequality, i.e.

rk := sup


µ(|Pf |k)
µ(|f |k)

: µ(f ) = 0


. (1)

Theorem 1.1. Assume that P is reversible, then

r2 ≤ r1 ≤ δ(P), (2)

where δ(P) is the Dobrushin coefficient:

δ(P) =
1
2
sup
x,y


z

|P(x, z) − P(y, z)|.

We can use r1 to describe the convergence of the semigroup Pn in L1(µ).

Theorem 1.2. (a) r1 < 1 ⇒ µ(|Pnf |) ≤ rn1µ(|f |), µ(f ) = 0, for all n > 1.
(b) Let

r1(Pm) := sup


µ(|Pmf |)
µ(|f |)

: µ(f ) = 0


, m ≥ 1.

Then r1(Pm) < 1 ⇒ µ(|Pnf |) ≤ [r1(Pm)][
n
m ]µ(|f |), µ(f ) = 0, for all n > m ≥ 1.

Finally, we define the other two constants related with the L1-Poincaré inequality.

γ0(A) := sup{µ|Pf − µ(f )| : f |Ac = 0, µ(|f |) = 1}.

By using Cheeger’s technique, we get upper bound and lower bound for r1.

Theorem 1.3. For the constants r1 and γ0(A), we have

1
2
sup
A

γ0(A) ≤ r1 ≤ inf
A


γ0(A) ∨ γ0(Ac)


. (3)

Corollary 1.1. Assume that P is reversible, then

1
2
sup
x


y

|P(x, y) − µ(y)| ≤ r1 ≤ inf
x


y

|P(x, y) − µ(y)| ∨ γ ({x}c)

.

2. Proof of the results

Proof of Theorem 1.1. In Theorem 1 in Zhang and Wang (2010), we proved that r2 is an eigenvalue of P . Now, we assume
g is a corresponding eigenfunction of r2, i.e. Pg = r2g . Then, we have

µ(g) = µ(Pg) = µ(r2g) = r2µ(g).

For r2 < 1, it follows that µ(g) = 0. According to the definition of r1, we have

r1 ≥
µ(|Pg|)
µ(|g|)

=
r2µ(|g|)
µ(|g|)

= r2.

So we prove the first part of inequality (2).
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