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a b s t r a c t

We develop a method for sequential detection of structural changes in linear quantile
regression models. We establish the asymptotic properties of the proposed test statistic,
and demonstrate the advantages of the proposed method over existing tests through
simulation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

For applicationswhere the relationship between the response and covariates has a structural change at a certain point, the
change may occur at the tails of the response distribution but not at the center. The conventional mean regression method
for change point detection cannot be used to identify such structural changes at tails ormay be lack of power in distributions
with heavy tails. To provide a more robust testing procedure and obtain a more comprehensive view of structural changes,
we focus on linear quantile regression models.

Several researchers have studied change point detection and estimation for quantile regression models, for instance,
Bai (1996), Su and Xiao (2008), Qu (2008), Oka and Qu (2011), Furno (2007) and Furno (2012), to name a few. These
work for quantile regression all focused on detecting changes in observations within a fixed length in a retrospective way.
These retrospective quantile methods cannot be applied to the sequential data where new data arrive steadily, because the
replication of such tests yields a procedure that rejects a true null hypothesis of no changewith probability approaching one;
see Robbins (1970). To our knowledge there exists little work for sequential change point detection in quantile regression
models. Among some relatedwork, Koubková (2008) proposed a L1-basedmonitoring procedure in linear regressionmodels,
and Chochola et al. (2013) discussed change point monitoring based on M-estimators. We develop a new procedure for
sequentially monitoring structural changes in linear quantile regression models.

Let y be the response variable and x be the p-dimensional covariate vector with the first element 1. Denote Qy(τ |x) =

inf{y : FY (y|x) ≥ τ } as the τ th conditional quantile of y given x, where Fy(·|x) is the conditional distribution of y given x.

∗ Corresponding author.
E-mail address: judywang@gwu.edu (H.J. Wang).

http://dx.doi.org/10.1016/j.spl.2015.01.031
0167-7152/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.spl.2015.01.031
http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spl.2015.01.031&domain=pdf
mailto:judywang@gwu.edu
http://dx.doi.org/10.1016/j.spl.2015.01.031


M. Zhou et al. / Statistics and Probability Letters 100 (2015) 98–103 99

Let {yi, xi, i ≥ 1} denote a sample with i representing a time index or some other ordering. We consider the linear quantile
regression model

Qy(τ |xi) = xTi βi,τ , i ≥ 1, (1)

where βi,τ is the p-dimensional unknown quantile coefficient vector. We are interested in monitoring the changes of the
effects of x on the quantiles of y over time, that is, monitoring the consistency of βi,τ over i.

In Section 2, we present the proposedmethods formonitoring change points at a single quantile level or across quantiles.
The performance of the proposed methods is assessed through a simulation study in Section 3. The technical proofs are
provided in the Supplementary Material (see Appendix A).

2. Proposed method

2.1. Sequential change point detection at a single quantile

We assume that there exists a historical data of size m such that β1,τ = · · · = βm,τ = β0
τ . This assumption was called

the ‘‘noncontamination’’ assumption in Chu et al. (1996). The historical data is used for obtaining an estimate for the pre-
change regression coefficient β0

τ . At a given quantile level τ ∈ (0, 1), we are interested in monitoring the future incoming
observations sequentially for a change in the regression coefficient, that is, testing the null hypothesis

H0 : βi,τ = β0
τ , for i ≥ m + 1,

against the alternative hypothesis

H1 : βi,τ =


β0
τ , for m + 1 ≤ i < m + k∗

β1
τ , for i ≥ m + k∗,

where k∗
≥ 1 is the unknown change point, and β0

τ ≠ β1
τ are the unknown pre- and post-change coefficients.

Let β̂τ be the quantile coefficient estimator ofβ0
τ based on the historical data, that is, β̂τ = argminβ∈Rp

m
i=1 ρτ (yi−xTi β),

where ρτ (u) = u{τ − I(u < 0)} is the quantile loss function; see Koenker and Bassett (1978). The building block of our
monitoring process is the following subgradient-based CUSUM-type process

S(m, k) = m−1/2J−1/2
m

m+k
i=m+1

xiψτ (yi − xTi β̂τ ), k = 1, . . . , Tm,

where Jm = τ(1− τ)Dm with Dm = m−1 m
i=1 xix

T
i , ψτ (u) = τ − I(u < 0) and Tm is the monitoring horizon. Our proposed

test statistic is defined as

Qτ = sup
1≤k≤Tm

Γ (m, k, γ ), where Γ (m, k, γ ) =

 S(m, k)
g(m, k, γ )


∞

,

g(m, k, γ ) = (1 + k/m){k/(m + k)}γ is the normalizing function and 0 ≤ γ < 1/2. The tuning parameter γ controls how
soon the monitoring will be stopped. The procedure with a larger value of γ will stop sooner and thus is preferred if the
structural change occurs shortly afterm. Throughout, we call a procedure open-end if the monitoring is continued possibly
to infinity if no alarm is raised (that is, the monitoring horizon Tm = ∞), and closed-end if the monitoring is stopped after
a fixed number of observations even if no change is detected (specifically Tm/m → N with N > 0); see Husková and Kirch
(2012) and Kirch and Kamgaing (2014) for similar definitions.

We propose to stop the monitoring process and reject H0 at the stopping time defined by

ST (m) =


inf{k ≥ 1 : Γ (m, k, γ ) ≥ cα}
∞, if Γ (m, k, γ ) < cα for all k = 1, . . . , Tm,

where cα is the critical value chosen to control the false alarm rate at a given significance level α ∈ (0, 1), that is,
limm→∞ P{ST (m) < ∞|H0} = α.

We make the following technical conditions.

Assumption A1. (y1, x1), (y2, x2), . . . are independent random pairs.

Assumption A2. The conditional density function of y given xi, denoted as fy(·|xi), is continuous, uniformly bounded away
from zero and infinity and has a bounded first derivative in the neighborhood of xTi βi,τ .

Assumption A3. Let ∥ · ∥ denote the Euclidean norm. The sequence {xi, 1 ≤ i < ∞} is strictly stationary satisfying the
following conditions:
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