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a b s t r a c t

We revisit the problem of estimating the mean of an infinite dimensional normal dis-
tribution in a Bayesian paradigm. Of particular interest is obtaining adaptive estimation
procedures so that the posterior distribution attains optimal rate of convergence without
the knowledge of the true smoothness of the underlying parameter of interest. Belitser
& Ghosal (2003) studied a class of power-variance priors and obtained adaptive posterior
convergence rates assuming that the underlying smoothness lies inside a countable set on
which the prior is specified. In this article, we propose a different class of exponential-
variance priors, which leads to optimal rate of posterior convergence (up to a logarith-
mic factor) adaptively over all the smoothness levels in the positive real line. Our proposal
draws a close parallelwith signal estimation in awhite noisemodel using rescaledGaussian
process prior with squared exponential covariance kernel.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider the infinite Gaussian sequence model

Xi = θi + ϵi, ϵi ∼ N(0, σ 2), i = 1, 2, . . . , (1)

where the parameter of interest is the infinite-vector θ = (θ1, θ2, . . .) ∈ ℓ2, i.e.,


∞

i=1 θ
2
i < ∞. Model (1) has received

widespread attention since it encapsulates many intrinsic conceptual issues associated with non-parametric estimation. In
particular, model (1) is equivalent to the canonical signal-in-white-noise model

X(t) =

 t

0
f (s)ds + σW (t), t ∈ [0, 1], (2)

where f ∈ L2[0, 1] is the unknown function to be estimated based on noisy measurements X(t), t ∈ [0, 1], and W (·) is
a standard Wiener process. The equivalence between (1) and (2) can be established by considering an orthonormal basis
{ψi} of L2[0, 1] (for example, the Fourier basis) with the standard inner product ⟨g, h⟩ =

 1
t=0 g(t)h(t)dt , and setting

Xi = ⟨X, ψi⟩ , θi = ⟨f , ψi⟩ and ϵi = ⟨W , ψi⟩; see, for example, Chapter 1 of Tsybakov (2008). With the calibration
σ = 1/

√
n in (1), Pinsker (1980) established the minimax quadratic risk of estimating θ over Sobolev ellipsoids of the
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formΘβ(B) = {θ :


∞

i=1 i
2βθ2i ≤ B} as

inf
θ̂

sup
θ∈Θβ (M)

Eθ

θ̂ − θ

2

2
≍ n−2β/(2β+1), (3)

where Eθ denotes an expectation with respect to the distribution of X = (X1, X2, . . .) given θ. Note that the minimax risk
is the same as in the case of estimating a β-smooth function (Stone, 1982). Adaptive estimation strategies without the
knowledge of the ‘‘smoothness’’-parameter β were first developed by Efroimovich and Pinsker (1984). We refer the reader
to the monograph by Johnstone (unpublished) which provides an excellent background and introduction to the infinite
sequence model and reviews minimax and adaptive estimation in this context.

In a Bayesian framework, Zhao (2000) considered independent Gaussian priors on the entries of θ of the form θi ∼

N(0, τ 2i )with τ 2i = τ 2i (β) = i−(2β+1). The resulting posterior mean was shown to attain the minimax rate (3) when the true
θ0 ∈ Θβ . For the same prior, Belitser and Ghosal (2003) established that the posterior contraction rate (Ghosal et al., 2000)
coincides with the minimax rate, i.e., the posterior probability assigned to an ℓ2 neighborhood of the true parameter having
radius a constant multiple of the minimax rate converges to one almost surely.

An unappealing aspect of the above prior is that it requires the knowledge of the true smoothness parameter β . The
main contribution of Belitser and Ghosal (2003) was to develop an adaptive Bayesian procedure which attains the minimax
rate without knowledge of the smoothness parameter. Bayesian procedures offer a natural prescription for adaptation
by introducing one or more additional level of hierarchy in defining the prior. Rather than choosing a fixed level of the
smoothness β , Belitser and Ghosal (2003) considered a discrete prior on β and showed that the resulting hierarchical
procedure adapts to any smoothness level in the prior support. Choosing the discrete set to be a dense subset of the
continuum (e.g., the set of rationals), it was additionally shown that one could adapt to any β > 0, though the posterior
contraction rate overshot the minimax rate by an arbitrarily small positive power of n in this case.

In this paper, we propose a class of exponential-variance priors on θ which is fundamentally different from the power-
variance priors studied in the afore-mentioned literature (Zhao, 2000; Belitser and Ghosal, 2003). The proposed class of
priors is indexed by a positive parameter a, which plays a similar role as an inverse-bandwidth parameter in nonparametric
kernel estimation (Tsybakov, 2008). We first consider a non-adaptive scenario where an optimal choice of the parameter a
given the knowledge of β is discussed. We next show that for a large class of prior distributions on a, the posterior achieves
the minimax rate (up to a logarithmic term) for θ0 ∈ Θβ for any β > 0. Since the prior distribution does not require
knowledge ofβ , the procedure is fully adaptive. Finally, we provide a heuristic argument to relate our priorwith the rescaled
Gaussian process priors developed by van der Vaart and van Zanten (2007, 2009) for nonparametric function estimation.
This connection may be helpful in extending the results proven in this paper for the infinite sequence model to Gaussian
process regression and related settings.

2. Preliminaries

Let ℓ2 = {θ = (θ1, θ2, . . .) :


∞

i=1 θ
2
i < ∞} denote the space of square-summable sequences. We shall write ∥·∥

for the ℓ2 norm throughout the paper, so that for any θ ∈ ℓ2, ∥θ∥2
=


∞

i=1 θ
2
i . Let Θβ = {θ ∈ ℓ2 :


i=1 i

2βθ2i < ∞}

denote the Sobolev space of infinite dimensional vectors with ‘‘smoothness’’ β > 0, and define the Sobolev norm ∥θ∥β =

(


i=1 i
2βθ2i )

1/2. Finally, letΘβ(B) denote a Sobolev-ball of radius
√
B defined as {θ ∈ Θβ : ∥θ∥2

β < B}.
Let X denote the infinite-dimensional random vector X = (X1, X2, . . .) distributed as (1); we shall use Pθ to denote the

distribution of the X. The notations Eθg(X)/Vθg(X) are used to denote the expectation/ variance of g(X)with respect to the
distribution Pθ of X. Define for ϵ > 0 and θ0 ∈ ℓ2, the Kullback–Leibler (KL) neighborhood of Pθ0 as

K(Pθ0; ϵ) =


θ :


Pθ0 log(Pθ0/Pθ) < ϵ2,


Pθ0 [log(Pθ0/Pθ)]

2 < ϵ2

.

Let L2[0, 1] denote the space of square integrable functions on [0, 1]. To distinguish from the ℓ2 norm, let ∥·∥2 denote the
L2 norm on [0, 1]with respect to the Lebesguemeasure. Throughout C, C ′, C1, C2, . . . are generically used to denote positive
constants whose values might change from one line to another, but are independent from everything else. . / & denote
inequalities up to a constant multiple. a ≍ b when we have both a . b and a & b. Let φ(t) = (2π)−1/2 exp(−t2/2) denote
the standard normal density and let φσ (t) = (1/σ)φ(t/σ).

3. Prior specification and main results

In this Section, we propose a class of exponential-variance priors on ℓ2 and state our results on posterior concentration
using such priors. Proofs of all results are deferred to a supplemental document (see Appendix A).

Consider the infinite sequence model (1) with σ = 1/
√
n. We define a class of exponential-variance priors on θ as

follows:

θi | a ∼ N(0, τ 2i (a)), τ 2i (a) =
1
a
e−i/a, i = 1, 2, . . . . (4)
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