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a b s t r a c t

The covariance estimation of multivariate nonlinear processes is studied. The het-
eroscedasticity autocorrelation consistent (HAC) and White (1980) estimators are com-
monly used in the literature to take into account nonlinearities. Noting that the more
general HAC estimation procedures may be sometimes viewed too sophisticated in appli-
cations, we propose tests for determining whether the simple White estimation could be
used or if HAC estimation is necessary to ensure a correct statistical analysis of time series.
The theoretical results are illustrated by mean of Monte Carlo experiments.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Considerable attention has been paid to the analysis of stationary time series within the large framework of processes
with dependent but uncorrelated innovations. Indeed such nonlinearities may arise for instance when the error process
follows a GARCH (first introduced by Engle, 1982), all-pass (Andrews et al., 2006) or other models generally displaying
a second order dependence (see Amendola and Francq, 2009). Note that such models are widely used in the literature.
Examples where the errors are dependent can be found in Francq et al. (2005).

In many situations taking into account the nonlinearities leads to estimate asymptotic covariance matrices of the form

IH =

h=∞
h=−∞

E(ΥtΥ
′

t−h), (1.1)

where the multivariate process (Υt) is specified below. Such matrices may be estimated using heteroscedastic
autocorrelation consistent (HAC) methods (see the seminal paper of Newey and West (1987) for the kernel method, or
Andrews and Monahan (1992) for the prewhitening method (VARHAC)). This may arise for instance when (Υt) is built from
a process with dependent but uncorrelated innovations (the weak case). Reference can be made to Romano and Thombs
(1996), Francq and Zakoïan (1998) in the univariate case, or Raïssi (2010), Boubacar Maïnassara (2012), Dufour and Pelletier
(2008) in themultivariate case for the use of the HAC estimation. Nevertheless there aremany caseswhere the expression of
IH may be simplified into IW := E(ΥtΥ

′
t ), so that theWhite (1980)method is preferable to estimate (1.1). This may arise (but

not necessarily) when (Υt) is a martingale difference. For instance Chabot-Hallé and Duchesne (2008), Månsson and Shukur
(2009) or Lee and Tse (1996), among others, proposed tools in presence of martingale differences innovations (the semi-
strong case) which may lead to use IW . Finally if we suppose that the innovations process is independent and identically
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distributed (i.i.d.) the statistical inference generally leads to standard asymptotic covariance forms. Note that considering a
HAC covariance estimator induces sophisticated procedures, on the contrary to theWhite or standardmethods. For instance
theWhite estimator is simply computed by averaging the cross-products of the availableΥt ’s, while HACmethods require to
choose a bandwidth, or to fit a vector autoregressivemodel to the (possibly) high dimensional process (Υt). As a consequence
a substantial gain in efficiency can be expected when using the White or standard covariance forms appropriately.
Nevertheless when (1.1) cannot be simplified clearly the HAC methods must be used to obtain a convergent estimator.

In view of the above arguments it is important for the practitioners to have tools available for choosing the relevant
covariance matrix estimation technique for the statistical analysis of time series. Francq and Zakoïan (2007) proposed a
procedure for testing the equality of standard asymptotic covariances and asymptotic covariances of the form (1.1), in the
framework of univariate weak autoregressive moving average (ARMA) models. The aim of the paper is to introduce a test
for choosing between HAC or White covariance matrix estimation procedures. It is important to point out that we are not
testing the semi-strong case versus the weak case.

In the paper the following notations are used. The almost sure convergence is denoted by
a.s.

−→, while the convergence
in distribution is denoted by ⇒. The usual Kronecker product is denoted by ⊗. The vec(.) operator consists in stacking the
columns of a matrix. For matrices A, B, C , D of appropriate dimensions and vectors z, w, basic rules give (AB) ⊗ (CD) =

(A ⊗ C)(B ⊗ D) and vec(zw′) = w ⊗ z.

2. The main result

Let us assume that (Υt) is given by Υt =


∞

i=0 Φiϵt−i where {Φi} is a sequence of real square matrices. The process (ϵt)
is d-dimensional (d ≥ 1). Define the strong mixing coefficients αa(h) for a given stationary process (at)

αa(h) = sup
A∈σ(au,u≤t),B∈σ(au,u≥t+h)

|P(A ∩ B) − P(A)P(B)| ,

which measure the temporal dependence of the process (at). Let ∥at∥q = (E∥at∥q)1/q, where ∥ · ∥ denotes the Euclidean
norm with E∥at∥q < ∞ and q ≥ 1. The following assumption delineates our framework:

Assumption A1. (i) The process (ϵt) is strictly stationary ergodic with finite positive definite covariance matrix Σϵ , such
that E(ϵt) = 0.

(ii) The process (ϵt) satisfies ∥ϵt∥4+2ν < ∞, and themixing coefficients of the process (ϵt) are such that


∞

h=0{αϵ(h)}ν/(2+ν)

< ∞ for some ν > 0.
(iii) Denoting by Φ

k,j
i the k, j-component of Φi, we assume that there exist constants K > 0 and 0 < ρ < 1 such that supk,j

|Φ
k,j
i | < Kρ i for all 1 ≤ k, j ≤ d.

Assumption A1 allows for a wide range of specifications. In particular the process (ϵt) may be a martingale difference
(as if it follows a GARCH model), uncorrelated but dependent (as in the case of All-Pass processes) or even correlated. The
dependence structure is controlled by condition (ii).

In the literature the Υt ’s are often built from an (multivariate) observed process (Xt) following some model of the form:
Xt = mθ0(Xt−1, Xt−2, . . . , ut−1, ut−2, . . .) + ut , (2.1)

where the conditional mean mθ0(.) is driven by a parameters vector θ0 ∈ Rℓ. The stationary innovations process (ut) is
uncorrelated but possibly dependent. Typically the practitioners consider (multivariate) ARMA models for the conditional
mean. The reader is referred to Francq et al. (2005) or Boubacar Maïnassara and Francq (2011) among others for the
statistical analysis of ARMAmodels with uncorrelated but dependent errors whichmay lead to use HAC orWhite covariance
estimators.

In order to exemplify, consider the testing of the linear Granger causality inmeanwidely used in time series econometrics
to investigate links between variables. In most of applied works a VAR structure is assumed for this task:

Xt = A01Xt−1 + · · · + A0pXt−p + ut ,

where the A0i’s are the autoregressive matrices satisfying regularity conditions, so that we may write Xt =


∞

i=0 φiut−i,
where φi is a sequence of matrices (see Lütkepohl (2005)). For building a Wald test for linear Granger causality in mean we
consider Υt = vec


utX

p′

t−1


= Xp

t−1 ⊗ ut , where X j
t−1 := (X ′

t−1, . . . , X
′

t−j)
′ for some j > 0. Writing Xp

t = AXp
t−1 + ũt =

∞

i=0
Aiũt−i with

A =


A01 . . . A0p
Id 0 0

0
. . . 0

0 0 Id

 ,

and ũt = (u′
t , 0, . . . , 0)

′, wehaveΥt =


∞

i=0(
Ai

⊗Id)(ũt−i−1⊗ut) =


∞

i=0 Φiϵt−i takingΦi =Ai
⊗Id and ϵt−i = ũt−i−1⊗ut . Of

course the autoregressive parameters are unknown and have to be estimated. As a consequence denoting by ût the residuals
of the estimation stage, we consider Υt = Xp

t−1 ⊗ ût in practice.
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