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a b s t r a c t

We present two novel and explicit parametrizations of Cholesky factor of a nonsingular
correlation matrix. One that uses semi-partial correlation coefficients, and a second that
utilizes differences between the successive ratios of two determinants. To each, we offer a
useful application.

Published by Elsevier B.V.

1. Cholesky decomposition—Introduction

For a positive-definite symmetric matrix Cholesky decomposition provides a unique representation in the form of LLT ,
with a lower triangular matrix L and the upper triangular LT . Offered by a convenient O(n3) algorithm, Cholesky decom-
position is favored by many for expressing the covariance matrix (Pourahmadi, 2011). The matrix L itself can be used to
transform independent normal variables into dependentmultinormal (Moonan, 1957)which is particularly useful forMonte
Carlo simulations.

Explicit forms of L are known for limited correlation structures such as the equicorrelated (Tong, 1990, p. 104), tridiagonal
(Miwa et al., 2003), and themultinomial (Tanabe and Sagae, 1992). The general correlated case is typically computed byusing
spherical parametrizations (Pinheiro and Bates, 1996; Rapisarda et al., 2007; Rebonato and Jackel, 2000; Mittelbach et al.,
2012), amultiplicative ensemble of trigonometric functions of the angles between pairs of vectors. Othersmay use Cholesky
matrix (Cooke et al., 2011, p. 49) that utilizes the multiplication of partial correlations.

In this paper, we will present two explicit parametrizations of Cholesky factor for a positive-definite correlation matrix.
Both parametrizations offer a preferable, simpler alternatives to the multiplicative forms of spherical parametrization and
partial correlations. In Section 2 we show that the nonzero elements of Cholesky factor are the semi-partial correlation
coefficients
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where R−1
i−1 is the inverse of the correlation matrix Ri = (ρkj)

i−1
k,j=1, ρ

∗j
i = (ρ1j, ρ2j, . . . , ρi−1,j) and ρi = ρ∗i

i . The order of
the ρij(1,...,i−1)s is determined by Cholesky factorization, and the notations are borrowed from Huber’s trivariate discussion
of semi-partial correlation in regression (Huber, 1981). In Section 3 we uncover that the squares, ρ2

ij(1,...,i−1), are equiva-
lent to the differences between two successive ratios of determinants, and we use this equivalence to construct the second
parametrization for L. In Section 3.1 we extend the representation of L to the structure of a covariance matrix, and in Sec-
tion 3.2 we study two inequality conditions that are essential for the positive-definiteness of LLT . We conclude this paper by
offering two possible applications, one for each of the suggested forms. In Section 4 we present a simple t-test that employs
the semi-partial correlation structure for testing the dependence of a single variable upon a set of multivariate normals. In
Section 5 we utilize the second parametrization to design a simple algorithm for the generation of random positive-definite
correlation matrices. We end the paper with the simple case of generalization of random AR(1) correlation in Section 5.1.

2. The first parametrization for Cholesky factor

Let Rn = (ρij)
n
ij=1 be a positive-definite correlation matrix, for which each sub-matrix Rk = (ρij)

k
ij=1 is positive-definite.

Let also L = (lij)nij=1 be Cholesky factor of R, |R| be the determinant of R, R−1 its inverse, and ρ
∗j
i = (ρ1j, ρ2j, . . . , ρi−1,j) for

j ≥ i, so ρi ≡ ρ∗i
i . To simplify writing also set R−1

0 ≡ 1. The first representation of L will use the semi-partial correlations
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For i = j, we have ρii(1,...,i−1) =
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of Ri, using the block matrix Ri−1 (Harville, 1997, p. 188),
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To show that Rn = LLT we introduce Theorem 1.

Theorem 1. For i ≥ 1 and n ≥ j ≥ i + 1,
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By the virtue that Cholesky factor of a positive-definitematrix has a unique representation, Theorem1will serve as a general
proof for the form (1). Some may recognize Eq. (3) in Theorem 1 as the inner-product used for the familiar algorithm of
Cholesky Decomposition (Harville, 1997, p. 235):
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Surprisingly, the equality in Theorem 1 seems to be unknown or neglected. The proof for Theorem 1 will be given in
Appendix A, and will be heavily based on the recursive arguments of Lemma 2:

Lemma 2. For i ≥ 1 and n ≥ j ≥ i + 1,
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The proof for Lemma 2 will be given in Appendix B.
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