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a b s t r a c t

We develop finite-population asymptotic theory for covariate adjustment in random-
ization-based causal inference for 2K factorial designs. In particular, we confirm that
both the unadjusted and the covariate-adjusted estimators of the factorial effects are
asymptotically unbiased and normal, and the latter is more precise than the former.
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1. Introduction

Randomization is often considered the gold standard for causal inference (Rubin, 2008). A well-establishedmethodology
to conduct causal inference is the potential outcomes framework (Neyman, 1923; Rubin, 1974), which defines the causal
effect of a binary treatment factor as the comparison between the potential outcomes under treatment and control. In
the presence of multiple binary treatment factors, we can evaluate them simultaneously under the 2K factorial design
framework (Fisher, 1935; Yates, 1937). Several researchers (e.g., Kempthrone, 1952, 1955; Wilk and Kempthrone, 1956;
Bailey, 1981, 1991; Dasgupta et al., 2015) advocated conducting randomization-based causal inference for 2K factorial
designs, which has several advantages over the widely-used regression-based inference. For example, randomization-based
inference is applicable to the finite-population setting, and therefore may be more reasonable in practice (e.g., Miller, 2006;
Lu et al., 2015). For more discussion on the comparison and reconciliation of randomization-based and regression-based
inferences for 2K factorial designs, see Lu (2016).

In randomization-based causal inference, covariate adjustment (Cochran, 1977) is a variance reduction techniquewidely
used by researchers (e.g., Deng et al., 2013; Miratrix et al., 2013). In an illuminating paper, Lin (2013) demonstrated
the advantages of performing covariate adjustment for randomized treatment–control studies (i.e., 21 factorial designs).
However, to our best knowledge, for 2K factorial designs which are of great importance from both theoretical and practical
perspectives, similar discussions appear to be absent; it is unclear whether covariate adjustment is beneficial for 2K factorial
designs, and if so, how to quantify said benefit. In this paper we answer this question, by extending the discussions in
Lin (2013) and illustrating the advantages of performing covariate adjustment in 2K factorial designs. To be specific, we
derive the closed-form expressions for the asymptotic precisions of the unadjusted and covariate-adjusted estimators, and
thus accurately measure the precision gained by covariate adjustment.

The paper proceeds as follows. Section 2 reviews randomization-based inference for 2K factorial designs. Section 3
introduces the covariate-adjusted estimator for 2K factorial designs. Section 4 derives the asymptotic precisions of the
unadjusted and covariate-adjusted estimators. Section 5 concludes and discusses possible future directions.
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2. Randomization inference for 2K factorial designs

In this section, we review the randomization-based inference framework for 2K factorial designs (Dasgupta et al., 2015;
Lu, 2016). For consistency we adopt the notations in Lu (2016).

2.1. 2K factorial designs

2K factorial designs consist of K distinct treatment factors, each of which has two levels coded as −1 and 1. To simplify
future notationswe let J = 2K . To define 2K factorial designs, we rely on a J× J orthogonalmatrixH = (h0, . . . , hJ−1), which
is often referred to as the model matrix (Wu and Hamada, 2009). We construct the model matrix in the following recursive
way (Espinosa et al., 2016; Lu, 2016):

1. Let h0 = 1J ;
2. For k = 1, . . . , K , construct hk by letting its first 2K−k entries be−1, the next 2K−k entries be 1, and repeating 2k−1 times;
3. If K ≥ 2, order all subsets of {1, . . . , K} with at least two elements, first by cardinality and then lexicography. For

k = 1, . . . , J − 1 − K , let σk be the kth subset and hK+k =


l∈σk
hl, where ‘‘


’’ stands for entry-wise product.

The jth row of the sub-matrix H̃ = (h1, . . . , hK ) is the jth treatment combination zj. To further illustrate the construction of
the model matrix, we adopt the example in Lu (2016).

Example 1. Let K = 2. By following the above recursive procedure, we obtain h0 = 1, h1 = (−1, −1, 1, 1)′, h2 = (−1, 1,
−1, 1)′, and h3 = (1, −1, −1, 1)′. Consequently, for 22 factorial designs the model matrix is:

H =


h0 h1 h2 h3
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1
1 1 1 1

.

The four treatment combinations are z1 = (−1, −1), z2 = (−1, 1), z3 = (1, −1) and z4 = (1, 1).

2.2. Randomization-based inference

We allowN ≥ 2J experimental units in the design. To describe the randomization-based inference framework, we follow
a three-step procedure.

First, under the Stable Unit Treatment Value Assumption (Rubin, 1980) that for j = 1, . . . , J there is only one version of
the treatment combination zj, and no interference among the experimental units, let Yi(zj) be the potential outcome of unit i
under treatment combination zj, and Ȳ (zj) = N−1N

i=1 Yi(zj) be the average potential outcome across all the experimental
units. Let Yi = {Yi(z1), . . . , Yi(zJ)}′ and Ȳ = {Ȳ (z1), . . . , Ȳ (zJ)}′.

Next, we randomly assign nj ≥ 2 units to treatment combination zj. Let

Wi(zj) =


1, if unit i is assigned treatment zj,
0, otherwise,

and let Y obs
i =

J
j=1 Wi(zj)Yi(zj) be the observed outcome for unit i, and therefore the average observed outcome across all

experimental units that are assigned to treatment combination zj is Ȳ obs(zj) = n−1
j
N

i=1 Wi(zj)Yi(zj). Furthermore, we let
Ȳ obs

= {Ȳ obs(z1), . . . , Ȳ obs(zJ)}′.
Finally, we define the factorial effects as

τ(l) =
1

2K−1
h′

lȲ (l = 1, . . . , J − 1),

and their randomization-based estimators as

τ̂rb(l) =
1

2K−1
h′

lȲ
obs (l = 1, . . . , J − 1). (1)

Its randomness is solely from the treatment assignmentWi(zj)’s.

3. Covariate adjustment in 2K factorial designs

The idea behind the randomization-based estimator is estimating the average potential outcome Ȳ (zj) by its
corresponding average observed outcome Ȳ obs(zj). However, as shown in Cochran (1977) and later mentioned in Lin
(2013), utilizing the pre-treatment covariates can potentially improve the precision of Ȳ obs(zj), and consequently that
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