Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/stapro)

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

We develop finite-population asymptotic theory for covariate adjustment in randomization-based causal inference for 2^K factorial designs. In particular, we confirm that both the unadjusted and the covariate-adjusted estimators of the factorial effects are asymptotically unbiased and normal, and the latter is more precise than the former.

Covariate adjustment in randomization-based causal

a b s t r a c t

Jiannan Lu

Analysis and Experimentation, Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA

a r t i c l e i n f o

Article history: Received 6 February 2016 Received in revised form 12 July 2016 Accepted 12 July 2016 Available online 19 July 2016

Keywords: Potential outcome Variance reduction Finite-population asymptotics

1. Introduction

Randomization is often considered the gold standard for causal inference [\(Rubin,](#page--1-0) [2008\)](#page--1-0). A well-established methodology to conduct causal inference is the potential outcomes framework [\(Neyman,](#page--1-1) [1923;](#page--1-1) [Rubin,](#page--1-2) [1974\)](#page--1-2), which defines the causal effect of a binary treatment factor as the comparison between the potential outcomes under treatment and control. In the presence of multiple binary treatment factors, we can evaluate them simultaneously under the 2*^K* factorial design framework [\(Fisher,](#page--1-3) [1935;](#page--1-3) [Yates,](#page--1-4) [1937\)](#page--1-4). Several researchers (e.g., [Kempthrone,](#page--1-5) [1952,](#page--1-5) [1955;](#page--1-5) [Wilk](#page--1-6) [and](#page--1-6) [Kempthrone,](#page--1-6) [1956;](#page--1-6) [Bailey,](#page--1-7) [1981,](#page--1-7) [1991;](#page--1-7) [Dasgupta](#page--1-8) [et al.,](#page--1-8) [2015\)](#page--1-8) advocated conducting randomization-based causal inference for 2^K factorial designs, which has several advantages over the widely-used regression-based inference. For example, randomization-based inference is applicable to the finite-population setting, and therefore may be more reasonable in practice (e.g., [Miller,](#page--1-9) [2006;](#page--1-9) [Lu](#page--1-10) [et al.,](#page--1-10) [2015\)](#page--1-10). For more discussion on the comparison and reconciliation of randomization-based and regression-based inferences for 2*^K* factorial designs, see [Lu](#page--1-11) [\(2016\)](#page--1-11).

In randomization-based causal inference, covariate adjustment [\(Cochran,](#page--1-12) [1977\)](#page--1-12) is a variance reduction technique widely used by researchers (e.g., [Deng](#page--1-13) [et al.,](#page--1-13) [2013;](#page--1-13) [Miratrix](#page--1-14) [et al.,](#page--1-14) [2013\)](#page--1-14). In an illuminating paper, [Lin](#page--1-15) [\(2013\)](#page--1-15) demonstrated the advantages of performing covariate adjustment for randomized treatment–control studies (i.e., 2^1 factorial designs). However, to our best knowledge, for 2^K factorial designs which are of great importance from both theoretical and practical perspectives, similar discussions appear to be absent; it is unclear whether covariate adjustment is beneficial for 2*^K* factorial designs, and if so, how to quantify said benefit. In this paper we answer this question, by extending the discussions in [Lin](#page--1-15) [\(2013\)](#page--1-15) and illustrating the advantages of performing covariate adjustment in 2^K factorial designs. To be specific, we derive the closed-form expressions for the asymptotic precisions of the unadjusted and covariate-adjusted estimators, and thus accurately measure the precision gained by covariate adjustment.

The paper proceeds as follows. Section [2](#page-1-0) reviews randomization-based inference for 2*^K* factorial designs. Section [3](#page-1-1) introduces the covariate-adjusted estimator for 2*^K* factorial designs. Section [4](#page--1-16) derives the asymptotic precisions of the unadjusted and covariate-adjusted estimators. Section [5](#page--1-17) concludes and discusses possible future directions.

<http://dx.doi.org/10.1016/j.spl.2016.07.010> 0167-7152/© 2016 Elsevier B.V. All rights reserved.

inference for 2*^K* factorial designs

© 2016 Elsevier B.V. All rights reserved.

E-mail address: [jiannl@microsoft.com.](mailto:jiannl@microsoft.com)

2. Randomization inference for 2*^K* **factorial designs**

In this section, we review the randomization-based inference framework for 2*^K* factorial designs [\(Dasgupta](#page--1-18) [et al.,](#page--1-18) [2015;](#page--1-18) [Lu,](#page--1-11) [2016\)](#page--1-11). For consistency we adopt the notations in [Lu](#page--1-11) [\(2016\)](#page--1-11).

2.1. 2 *K factorial designs*

2 *K* factorial designs consist of *K* distinct treatment factors, each of which has two levels coded as −1 and 1. To simplify future notations we let $J=2^K$. To define 2^K factorial designs, we rely on a $J\times J$ orthogonal matrix $\bm H=(\bm h_0,\ldots,\bm h_{J-1})$, which is often referred to as the model matrix [\(Wu](#page--1-19) [and](#page--1-19) [Hamada,](#page--1-19) [2009\)](#page--1-19). We construct the model matrix in the following recursive way [\(Espinosa](#page--1-20) [et al.,](#page--1-20) [2016;](#page--1-20) [Lu,](#page--1-11) [2016\)](#page--1-11):

1. Let $h_0 = 1/2$;

- 2. For *^k* = ¹, . . . , *^K*, construct *^h^k* by letting its first 2*^K*−*^k* entries be −1, the next 2*^K*−*^k* entries be 1, and repeating 2*^k*−¹ times;
- 3. If $K \geq 2$, order all subsets of $\{1, \ldots, K\}$ with at least two elements, first by cardinality and then lexicography. For

 $k = 1, \ldots, J-1-K$, let σ_k be the *k*th subset and $h_{K+k} = \prod_{l \in \sigma_k} h_l$, where " \prod " stands for entry-wise product.

The *j*th row of the sub-matrix $\tilde{\bm{H}}=(\bm{h}_1,\ldots,\bm{h}_K)$ is the *j*th treatment combination \bm{z}_j . To further illustrate the construction of the model matrix, we adopt the example in Lu [\(2016\)](#page--1-11).

Example 1. Let $K = 2$. By following the above recursive procedure, we obtain $h_0 = 1$, $h_1 = (-1, -1, 1, 1)'$, $h_2 = (-1, 1, 1)$ -1 , 1^{)'}, and **h**₃ = $(1, -1, -1, 1)$ [']. Consequently, for 2² factorial designs the model matrix is:

$$
H = \begin{pmatrix} h_0 & h_1 & h_2 & h_3 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & 1 & 1 & 1 \end{pmatrix}.
$$

The four treatment combinations are $z_1 = (-1, -1)$, $z_2 = (-1, 1)$, $z_3 = (1, -1)$ and $z_4 = (1, 1)$.

2.2. Randomization-based inference

We allow $N \geq 2J$ experimental units in the design. To describe the randomization-based inference framework, we follow a three-step procedure.

First, under the Stable Unit Treatment Value Assumption [\(Rubin,](#page--1-21) [1980\)](#page--1-21) that for $j = 1, \ldots, J$ there is only one version of the treatment combination z_j , and no interference among the experimental units, let $Y_i(z_j)$ be the potential outcome of unit *i* under treatment combination z_j , and $\bar{Y}(z_j)=N^{-1}\sum_{i=1}^N Y_i(z_j)$ be the average potential outcome across all the experimental units. Let $Y_i = \{Y_i(z_1), \ldots, Y_i(z_j)\}$ and $\vec{Y} = \{\vec{Y}(z_1), \ldots, \vec{Y}(z_j)\}$.

Next, we randomly assign $n_j \geq 2$ units to treatment combination \boldsymbol{z}_j . Let

$$
W_i(\mathbf{z}_j) = \begin{cases} 1, & \text{if unit } i \text{ is assigned treatment } \mathbf{z}_j, \\ 0, & \text{otherwise,} \end{cases}
$$

and let $Y_i^{\text{obs}} = \sum_{j=1}^J W_i(\pmb{z}_j) Y_i(\pmb{z}_j)$ be the observed outcome for unit *i*, and therefore the average observed outcome across all experimental units that are assigned to treatment combination z_j is $\bar Y^{\rm obs}(z_j)=n_j^{-1}\sum_{i=1}^N W_i(z_j)Y_i(z_j)$. Furthermore, we let $\bar{Y}^{\text{obs}} = {\bar{Y}^{\text{obs}}(z_1), \ldots, \bar{Y}^{\text{obs}}(z_J)}'.$

Finally, we define the factorial effects as

$$
\tau(l) = \frac{1}{2^{K-1}} \mathbf{h}'_l \bar{\mathbf{Y}} \quad (l = 1, \ldots, J-1),
$$

and their randomization-based estimators as

$$
\hat{\tau}_{\rm rb}(l) = \frac{1}{2^{K-1}} \mathbf{h}'_l \bar{\mathbf{Y}}^{\rm obs} \quad (l = 1, \dots, J-1). \tag{1}
$$

Its randomness is solely from the treatment assignment *Wi*(*zj*)'s.

3. Covariate adjustment in 2*^K* **factorial designs**

The idea behind the randomization-based estimator is estimating the average potential outcome $\bar{Y}(z_i)$ by its corresponding average observed outcome $\bar{Y}^{obs}(z_i)$. However, as shown in [Cochran](#page--1-12) [\(1977\)](#page--1-12) and later mentioned in [Lin](#page--1-15) [\(2013\)](#page--1-15), utilizing the pre-treatment covariates can potentially improve the precision of $\bar{Y}^{obs}(z_i)$, and consequently that Download English Version:

<https://daneshyari.com/en/article/1151454>

Download Persian Version:

<https://daneshyari.com/article/1151454>

[Daneshyari.com](https://daneshyari.com)