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a b s t r a c t

We propose a scalar variation of the multivariate HEAVY model of Noureldin et al. (2012)
featuring a time-varying long run (co)volatility component coupled with DCC dynamics.
The newmodel outperforms the original HEAVYmodel by delivering more accurate multi-
step-ahead predictions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

There is a vast consensus among practitioners that inclusion of high frequency information enables the development of
more accurate forecasting models for the conditional covariance of daily returns. An outstanding example is represented
by the class of multivariate High-frEquency-bAsed VolatilitY (HEAVY) models introduced by Noureldin et al. (2012), which
links the dynamics of the conditional covariance matrix to the realized measure using a system of two equations akin to the
multivariate BEKK (Engle and Kroner, 1995) specification. The model has several advantages, the main ones that it is easy to
estimate by MLE and able to provide closed-form forecasting formulas. Nevertheless, when the scalar version of the model
is employed with targeting (as is often the case in financial applications), the conditional covariance dynamics are driven
by only two parameters, thus strongly penalizing the flexibility of the model in times of significantly changing economic
conditions. For this reason, the authors raise the interesting question of whether a more sophisticated parameterization
could improve the forecasting ability of the model. We address this question by studying a new model, the Time Varying
Long Run (TVLR) HEAVY, which extends the baseline HEAVY specification to a component structure that decomposes
the conditional covariance matrix into long-run (permanent) and short-run (transitory) components in a multiplicative
fashion, similarly to the approach adopted by Golosnoy et al. (2012) and Bauwens et al. (forthcoming). We model the
trend component using a finite distributed lag specification typically encountered in the Mixed Data Sampling (MIDAS)
regression framework and allow the short term dynamics to move according to a DCC (Engle, 2002) specification, thus
stepping away from the basic linear BEKK recursion. We compare the TVLR-HEAVY against the standard HEAVY model
and other selected benchmarks from both an in- and out-of-sample perspective. For the TVLR-HEAVY, multi-step ahead
forecasts are constructed using the direct approach which overcomes the difficulties created by the nonlinear structure of
themodel. In this way, the model can still be feasibly estimated byMLE, thus keeping computational tractability in practical
applications.

Our set of results shows that introducing an additional component that captures the secular movements in the
(co)volatility dynamics iswell justified, as the newmodel is found to improve over existing benchmarks both in the overall fit
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and predictive accuracy.While at very short forecasting horizons other less parameterizedmodels seem to be preferred, the
forecast gains of the TVLR-HEAVY tend to be particularly admirable at longer horizons, when the impact of the time-varying
trend component appears to be predominant.

The structure of the paper is as follows. Section 2 briefly recalls the multivariate general framework and formally
introduces the newmodel and its estimation approach. Section 3 illustrates the aimof the empirical application and presents
the results of both the in- and out-of-sample analysis. Section 4 concludes the paper with some final remarks.

2. General framework

Let rt denote the (n × 1) vector of daily returns at time t and Pt = rtr ′
t the (n × n) matrix obtained as the outer product

of daily returns. The realized measure is denoted by Vt , and is a (n× n), symmetric and positive definite (PD) matrix. Herein
we use the realized covariance (RC) estimator obtained by summing up intra-daily returns at the 5 min frequency, although
any other consistent estimator could be used.

Conditionally on past information ℑt−1 consisting of Vτ for τ ≤ t − 1, Vt is assumed to follow a n-dimensional central
Wishart distribution, i.e. Vt |ℑt−1 ∼ Wn(ν,Mt/ν) with ν > (n − 1), while Pt |ℑt−1 ∼ SINGW n(1,Ht/ν), where SINGW n

denotes a n-dimensional Singular Wishart distribution, following by the assumption that rt = H1/2
t ϵt with ϵt ∼ N(0, In). As

already stressed in the paper by Noureldin et al. (2012), the distinction between theWishart and Singular Wishart densities
is of no consequence to QML estimation.

Therefore, for the properties of the Wishart distribution, we have that

E(Pt |ℑt−1) = E(rtr ′

t |ℑt−1) = Ht (1)

E(Vt |ℑt−1) = Mt (2)

where the PD matrices Mt and Ht are the conditional expectation of the realized measure and of the outer product of daily
returns, respectively. Note that they both condition on the same high frequency information, hence they are assumed to be
ℑt−1 measurable.

The HEAVY model links the dynamics of Ht to the realized measure and is based on a system of two equations for Ht
and Mt both akin to the multivariate BEKK specification. Consistently with Noureldin et al. (2012), we will refer to these
equations as HEAVY-P and HEAVY-V, unless otherwise stated. Restricting to the scalar case, they are written as follows:

Ht = ΩH + α2
HVt−1 + β2

HHt−1 (3)

Mt = ΩM + α2
MVt−1 + β2

MMt−1 (4)

where α > 0 and β ≥ 0. If covariance stationarity holds, i.e. α + β < 1, the model can be expressed in its covariance
targeting parameterization. In this case, the intercept matrices ΩH and ΩM are written in terms of the unconditional first
moments ofHt andMt andmodel parameters, i.e. BH := E(Pt) = (1−α2

H−β2
H)−1ΩH and BM := E(Vt) = (1−α2

M−β2
M)−1ΩM .

Eq. (4) is not needed for computing one-step ahead forecasts of Ht , but is necessary at more than one step ahead due to
the presence of Vt−1 in Eq. (3). Noureldin et al. (2012) propose analytical formulas to achievemulti-period ahead predictions
of Ht .

As we will show in a moment, the TVLR-HEAVY model features a nonlinear parameterization of Ht due to the presence
of the DCC structure that creates problems in constructing closed-form expressions for multi-step predictions. In a similar
scenario, Golosnoy et al. (2012) resorted to indirect forecasting via Monte Carlo simulations of the h-steps ahead forecast
distribution of returns. An easier solution, in this framework, can be found by applying the direct forecast approach to the
HEAVY-P equation, a method that has been extensively used in the empirical finance literature as an alternative to the
iterated one, see for exampleMarcellino et al. (2006), Ghysels et al. (2009) and Proietti (2011). It entails to estimate a horizon-
specific model of the (co)volatility, say weekly or monthly, which can then be used to form direct predictions over the next
week or month. As only observed data are utilized to predict future periods, it is thought to yield reliable results. In this
way, only a unidimensional system is needed to achieve direct multi-step ahead predictions of Ht , as those of Vt are directly
taken into account in the same equation. We elaborate on this point in the following subsection, which formally introduces
the proposed model and its estimation approach.

2.1. The model

The TVLR-HEAVY model features a multiplicative decomposition of the conditional covariance matrix of returns Ht into
a secular component St = GtG′

t and a short term component H⋆
t , as follows:

Ht = GtH⋆
t G

′

t (5)

whereH⋆
t is a (n×n) PDmatrix andGt a lower triangularmatrix obtained as e.g. a Cholesky factorization of St . St captures the

long termmovements in the levels aroundwhich (co)volatilities fluctuate fromday to daywhileH⋆
t represents the transitory

component of the covariance dynamics. In order to identify the model, we impose E(H⋆
t ) = In, with In the (n × n) identity
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