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a b s t r a c t

Wepropose a novel variable selection for varying coefficientmodelswith longitudinal data.
The theoretical properties of the resulting estimators are established. In addition, simula-
tion studies and a real data set are conducted to evaluate the proposed method.
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1. Introduction

The varying coefficient model is an important generalization of the linear regression model and has gained a lot of
popularity during the past decade. Due to its flexibility to explore the dynamic features which may exist in the data and its
easy interpretation, the varying coefficient models have beenwidely used in various disciplines, such as finance, economics,
medicine, ecology, and biology. It has also experienced rapid developments in both theory and methodology. For example,
Hastie and Tibshirani (1993) studied the varying coefficient model; the other discussions and extensions about varying
coefficientmodel can also be seen in Fan and Zhang (1999), Chiang et al. (2001), Huang et al. (2002), Lai et al. (2016) and so on.

Longitudinal data are often collected from experimental studies or clinical trials. The subjects under study are measured
repeatedly during the period of the study. A major aspect of longitudinal data is the within-subject correlation among
the repeated measurement. Ignoring this within-subject correlation causes a loss of efficiency in general problems. The
commonly used regressionmethod for analysis are generalized estimating equations (GEE). GEE using aworking correlation
matrix with nuisance parameters estimate regression parameters consistently even when the correlation structure is
misspecified. However, under such misspecification, the estimator can be inefficient. For this reason, Qu et al. (2000)
proposed amethod of quadratic inference function (QIF). It avoids estimating the nuisance correlation structure parameters
by assuming that the inverse of working correlation matrix can be approximated by a linear combination of several known
basis matrices. The QIF can efficiently take the within-cluster correlation into account and is more efficient than the GEE
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approach when the working correlation is misspecified. The QIF estimator is also more robust against contamination when
there are outlying observations (Qu and Song, 2004).

Recently, variable selection is an important topic in all regression analysis and many procedures have been developed
for this. Generally speaking, most of the variable selection procedures are based on penalized estimation using penalty
functions. Such as, Lq penalty (Frank and Friedman, 1993), LASSO penalty (Tibshirani, 1996), SCAD penalty (Fan and Li,
2001), and so on. These variable selection procedures are based on penalized estimation using penalty functions, which
have a singularity at zero. Therefore, these variable selection procedures require convex optimization, which will incur a
computational burden. To overcome this problem, Ueki (2009) developed a new variable selection procedure called the
smooth-threshold estimating equations that can automatically eliminate irrelevant parameters by setting them as zero.
Recently, Lai et al. (2012) explored GEE estimation and smooth-threshold GEE variable selection for single-index models
with clustered data. Li et al. (2013) considered variable selection for the generalized linear models with longitudinal data
using smooth-threshold generalized estimating equations.

In this paper we use the smooth-threshold generalized estimating equations based on quadratic inference function
(SGEE-QIF) to the varying coefficient model with longitudinal data. The proposed procedure automatically eliminates the
irrelevant coefficient functions by setting them as zero, and simultaneously estimates the nonzero regression coefficient
functions by solving the SGEE-QIF. Compared with the shrinkage methods and the existing research findings reviewed
above, our method offers the following improvements. Firstly, our approach can be easily implemented without solving
any convex optimization problems, and possess the oracle property. Secondly, compared with Ueki (2009) and Li et al.
(2013), we extend the smooth-threshold estimating equations approach to the varying coefficient model for longitudinal
data, which have become a favored tool for modeling longitudinal data. Thirdly, the proposed method is easy to deal with
the longitudinal correlation structure.

The rest of this paper is organized as follows. In Section 2 we first propose a variable selection procedure for varying
coefficient model with longitudinal data. Asymptotic properties of the resulting estimators are considered in Section 3. In
Section 4we give the choice of the tuning parameters. In Section 5we carry out simulation studies to assess the finite sample
performance of the method. We further illustrate the proposed methodology via a real data analysis in Section 6. Section 7
contains some concluding remarks. The technical proofs of all asymptotic results are provided in the SupplementaryMaterial
(see Appendix A).

2. Methodology

2.1. Quadratic inference functions

In a longitudinal study, n subjects and mi observations over time for the ith subject (i = 1, . . . , n) for a total of
N =

n
i=1 mi observation. Each observation consists of a response variable Yij and a covariate vector Xij ∈ Rp, j = 1, . . . ,mi.

We assume that the varying coefficient model satisfies the following mean structure:

Yij = XT
ij θ(Uij) + εij, (2.1)

where θ(·) is a p-vector of unknown functions, εij is random error with E(εij|Xij) = 0. In addition, we give assumptions on
the first two moments of the observations {Yij}, that is, E(Yij) = µij = XT

ij θ(Uij) and Var(Yij) = v(µij), where v(·) is a known
variance function. Here, we are interested in the longitudinal data settingwhere data are correlatedwithin the same subject,
while the observations from different subjects are independent.

Following He et al. (2002), we replace θ(·) by its basis function approximations. More specifically, let B(u) =

(B1(u), · · · , BL(u))T be B-spline basis functions with the order of M , where L = K + M , and K is the number of interior
knots. We use the B-spline basis functions because they have bounded support and are numerically stable (Schumaker,
1981). Selection of knots is generally an important aspect of spline smoothing. In this paper, similar to He et al. (2005), the
number of internal knots is taken to be the integer part of N1/5. Then, θk(u) can be approximated by

θk(u) ≈ B(u)Tβk, k = 1, . . . , p. (2.2)

LetWij = Ip ⊗ B(Uij) ·Xij, β = (βT
1 , . . . , βT

p )T , Yi = (Yi1, . . . , Yimi)
T , and write Xi,Wi, εi in a similar fashion. According to the

GEE method from Liang and Zeger (1986), we can define the following generalized estimating function for β

U(θ, α) =

n
i=1

W T
i V

−1
i (Yi − Wiβ), (2.3)

where Vi is the covariance matrix of Yi. Following Liang and Zeger (1986), we simplify the covariance of the ith subject Vi by
taking Vi = A1/2

i R(α)A1/2
i , where Ai = diag(Var(Yi1), . . . ,Var(Yimi)), R(α) is a common working correlation with a nuisance

parameters α. If the working correlation R(α) is misspecified, the estimator of the regression parameter is still consistent,
but is not efficient.
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