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a b s t r a c t

A kernel ensemble classifier is developed for accurate classification based on several initial
classifiers. A data-driven choice of the smoothing parameter of the kernel is considered
and the resulting classifier is shown to be asymptotically optimal. Therefore, the proposed
combined classifier asymptotically outperforms each individual classifier.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

This article focuses on methods and procedures that can be used to combined several individual classifiers in order
to develop more effective classification rules. Different classifiers are usually constructed based on different theories or
different estimation procedures and, depending on the type of distributional assumptions imposed on the data, some
classifiers perform better in the sense of having lower misclassification error rates. However, given a number of individual
classifiers, it is not always clear as to how to develop a systematic approach or a general framework for choosing the
classifier with the smallest error rate; this is particularly true in nonparametric situations. Furthermore, since the exact
distribution of the data is virtually always unknown, and since each classifier may have certain unique merits, it would be
logical to somehow combine the individual classifiers in such away that the resulting combined classifierwould be superior.
Combined or ensemble classification results in the literature may be divided into two main types: (i) those that start with
a large number of base classifiers, which are usually homogeneous in nature (such as a large number of tree classifiers),
which will then be combined into a final classification rule. (ii) Those that combine a number of classifiers that have been
constructed using different theories or estimation procedures, which is themain focus of this paper. Breiman’s (1995, 2001)
popular Random Forests classifier falls under (i) Other results that fall under (i) include Biau et al. (2008) and Lin and Jeon
(2006). On the other hand, thework of LeBlanc andTibshirani (1996),Mojirsheibani (1999), andMojirsheibani andMontazeri
(2015) fall primarily under (ii) For more on the taxonomy of ensemble classifiers one may refer to, for example, Zhang and
Duin (2011).

There are many intuitively appealing methods for combining classifiers in the literature; these methods may be put into
two categories themselves:weighting methods andmeta-learning. Weighting methods include the majority voting approach
used, for example, by Breiman (1996, 2001) for tree classification, and by Xu et al. (1992) in handwriting recognition.
Averaging and weighted-averaging of estimated class conditional probabilities (that are produced by each individual
classifier) have also been considered by some authors; see, for example, Xu et al. (1992), Breiman (1995), and LeBlanc and
Tibshirani (1996). The work of Adler et al. (2011) on combined classification for paired data, and De Bock et al. (2010) on a
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generalized additive model based approach to ensembles provide additional new directions. There are also other weighting
methods that can be found in Rokach (2009, 2010). Meta-learning methods usually work by using the predicted values
of the individual classifiers on the data. Relevant results along these lines include the stacked generalization of Wolpert
(1992), Breiman’s (1995) stackedmethod, andMojirsheibani’s (1999) nonlinear combined classifiers. For a detailed account
of meta-learning methods one may refer to Rokach (2009). Combined or ensemble estimation has also been employed in
regression andmodel selection problems in the literature. See, for example, the work of Yang (2000, 2004) and van der Laan
et al. (2007). In amore recent article, Biau et al. (2016) proposed a combined regression estimatorwhich can, asymptotically,
outperform each of the individual regression estimators in the L2 sense.

The rest of the paper is organized as follows. In Section 2 we discuss and study kernel combined classifiers; our key
contributions appear in Theorem 2. In Section 2.2we carry out some numerical studies that confirm our theoretical findings.
All proofs are deferred to Appendix.

2. The proposed kernel combined classifier

2.1. Methodology

In this article we consider the following standard two-group classification problem. Let (X, Y ) be a random pair, where
X ∈ Rd is called the covariate or feature vector and Y ∈ {0, 1}, called the class variable, has to be predicted based on X. The
aim of classification is to find a function (a classifier)ψ : Rd

→ {0, 1}whosemisclassification error rate (i.e., the probability
of incorrect prediction), P{ψ(X) ≠ Y }, is as small as possible. The best classifier, also called the Bayes classifier, is given by

ψB(X) =

1 if P{Y = 1|X} >
1
2

0 otherwise,
(1)

where P{Y = 1|X} = E[I{Y = 1}|X] and where I{C} stands for the indicator function of the set C; see, for example,
Devroye et al. (1996, Ch. 2). In practice the distribution of (X, Y ) is always fully or partially unknown and therefore finding
the function ψB is impossible. Now suppose that we have available n independently and identically distributed (i.i.d.)
observations, i.e., the data, Dn := {(X1, Y1), . . . , (Xn, Yn)}, where (Xi, Yi)

i.i.d.
= (X, Y ), i = 1, . . . , n, and letψn,1, . . . ,ψn,M be

M different individual classifiers based on the data Dn. For example, ψn,1 may be a kernel classifier, ψn,2 a nearest neighbor
(NN) classifier,ψn,3 might be somethingmore complicated such as Breiman’s (2001) random forests classifier or the support
vector machines (SVM) of Boser et al. (1992), etc. Next letψn(X) =

ψn,1(X), . . . ,ψn,M(X)
′

be the vector of M individual data-based classifiers and define the combined classifier φ∗
n by

φ∗

n (
ψn(X)) =

1 if P

Y = 1

ψn(X)

>

1
2

0 otherwise.
=


1 if E


(2Y − 1)

ψn(X)

> 0

0 otherwise.
(2)

It is straightforward to show that (2) is theoretically optimal in the sense that its overall misclassification error probability,
P{φ∗

n (
ψn(X)) ≠ Y }, is less than or equal to that of any other combined classifier. More formally, we have the following

elementary result

Theorem 1. The combined classifier φ∗
n in (2) is optimal, i.e.,

P

φ∗

n (
ψn(X)) ≠ Y


= inf

φ: {0,1}M→{0,1}
P

φ(ψn(X)) ≠ Y


.

See Appendix for a proof.
Of course, the above result immediately implies that for each individual classifier ψn,j, j = 1, . . . ,M , we have

P{φ∗
n (
ψn(X)) ≠ Y } ≤ P{ψn,j(X) ≠ Y }. Unfortunately the combined classifier φ∗

n in (2) is not available in practice
because it depends on unknown conditional probabilities. In what follows we propose a kernel estimator of φ∗

n , where
the smoothing parameter of the kernel is estimated by a data-driven choice that minimizes the so-called resubstitution
estimate of the probability of misclassification. We recall that for any classifier ψn, constructed based on the data (Xi, Yi),
i = 1, . . . , n, the resubstitution estimator of the misclassification probability of ψn is given by n−1n

i=1 I{ψn(Xi) ≠ Yi}.
Our proposed approach uses a data-splitting method that works as follows. Start by randomly splitting the data Dn :=

{(X1, Y1), . . . , (Xn, Yn)} into two parts, Dm of size m and Dℓ of size ℓ, where ℓ + m = n and Dm ∪ Dℓ = Dn. Also, letψm,1, . . . ,ψm,M be the individual classifiers constructed based on the subsample Dm only (instead of Dn). Now, consider the
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