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a b s t r a c t

We generalize the results of Satopää et al(in press, 2015) by showing how the Gaussian
aggregator may be computed in a setting where parameter estimation is not required.
We proceed to provide an explicit formula for a ‘‘one-shot’’ aggregation problem with two
forecasters.
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1. Introduction

Prediction polling is a form of polling that asks a group of people to predict a common quantity. These forecasts are often
used to make important decisions in medicine, economics, government, etc. In many practical settings, it is not possible to
determine ex-ante which of the forecasters is the most informed or accurate (and even if this could be done, a decision to
follow a specific forecaster’s advicemay result in relevant information fromother forecasters being ignored). Amore prudent
solution is to pool the forecasters’ information into a single consensus. This requires aggregators which can incorporate
different information structures amongst the forecasters. This task motivated the work of Satopää et al. (in press, 2015),
which introduced the Gaussian partial information framework for forecast aggregation. Further methodological framework
for estimating parameters in the Gaussian partial information model was developed in Satopää et al. (2015).

The purpose of this letter is to further generalize the results of Satopää et al. (in press, 2015) by showing how theGaussian
aggregator may be computed via a (Bayesian) approach in which parameter estimation is not required. Our main result is
Theorem 3.1, which provides an explicit formula for the Gaussian aggregator in a ‘‘one-shot’’ (a setting in which a stream of
forecasts is unavailable) aggregation problem with two forecasters.
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In the remainder of the introduction we give a brief description of important challenges in event forecasting and in
forecast aggregation.We proceed to summarize the partial information framework, the Gaussian partial informationmodel,
and our Bayesian approach. Section 2 recalls the relevant computations for the Gaussian model with fixed parameters.
Section 3 computes the Bayesian aggregator and Section 4 utilizes hypothetical data to compare the aggregators.

1.1. Event forecasting, loss functions, and calibration

In event forecasting, an expert is asked for a series {pn} of probability forecasts for events {An}. The quantitative study
of event forecasting dates back at least three decades (Dawid, 1982; Murphy and Winkler, 1987). Usually, the expert is
scored by a loss function L(pn, 1An). The loss function L is assumed to be proper, meaning that p minimizes EL(·, Y ) when
Y is a Bernoulli random variable with mean p. Thus a forecaster with subjective probability p minimizes expected loss by
forecasting p. For a more complete discussion of probability forecasting and proper loss functions, one may consult (Hwang
and Pemantle, 1997).

Probability forecasts can suffer from two kinds of errors: bias and imprecision. Bias occurswhen the long run frequency of
An for those pn ≈ p is not equal to p. Imprecision occurs when pn is typically not close to zero or one. Assuming a sufficiently
long stream of forecasts, each forecast pn may be replaced by the forecast q(pn) where q(t) is the long run frequency of An
given a forecast of t . The forecast is then said to be calibrated; (cf. Murphy andWinkler, 1987) in this workwe always assume
calibrated forecasts. Of course, there are settings in which a stream of forecasts may not be available. In such a setting it is
impossible to assess bias. A reasonable protocol is to assume no bias and to encourage calibration via proper loss functions
(see Ungar et al., 2012).

Unlike other aggregators, a distinct advantage of one-shot aggregators is their universality; they can employed when
a stream of forecasts is unavailable. One-shot aggregators can also serve as an equally applicable yet a more principled
alternative to common aggregators such as the average and median. The simplicity of the average and the median
aggregators has long been attractive to practitioners. The key contribution of this letter is to encourage the use of more
principled aggregation techniques by providing a partial information aggregator that, too, has a simple and closed-form
expression.

1.2. Forecast aggregation

Various probability models have been implicitly or explicitly used for producing a synthesized forecast from a collection
of expert forecasts. Consider a probability space (Ω, F , P) and events A ∈ F . As discussed in Satopää et al. (in press, 2015),
an expert’s forecast is considered to be calibrated if the forecast p for an event A is equal to P(A|F ′) for some F ′

⊆ F . The
σ -field F ′ represents the information used to make the forecast; it need not be the full information available to the expert.

Some empirical work on forecast aggregation operates outside the above framework. For example, the measurement
error framework assumes there is a true probability θ , interpreted as the forecast made by an ‘‘ideal’’ forecaster. The actual
forecasters observe a transformationφ(θ) togetherwith independentmean zero idiosyncratic errors. This leads to relatively
simple aggregation rules. For example, if φ is the identity, the forecasters are assumed to be reporting θ plus independent
mean zero errors. The corresponding aggregator then simply averages the forecasts

gave(p1, . . . , pn) :=
1
n

n
k=1

pk. (1)

When the function φ is Φ−1 (the inverse normal CDF) this leads to probit averaging, defined by

gprobit(p1, . . . , pn) := Φ


1
n

n
k=1

Φ−1(pk)


. (2)

Such models, while very common in practice, lead both to uncalibrated forecasts and suboptimal performance. Some
theoretical problems with these models are discussed by Hong and Page (2009); for example, such aggregators can never
leave the convex hull of the individual expert forecasts, which is demonstrably sub-optimal in some cases (Parunak et al.,
2013); see also Satopää et al. (2015, Section 2.3.2).

LettingF ′′
= σ(p1, . . . , pn), we define an aggregator as any randomvariable p̃ ∈ F ′′. Then, amongst all such aggregators,

p′′ (see (3)) is the one that minimizes the expectation of any proper loss function. It is also calibrated.
In the partial information framework for aggregation of calibrated forecasts proposed by Satopää et al. (in press, 2015),

each forecaster i, 1 ≤ i ≤ N is assumed to have access to information Fi. The aggregator only considers the forecasts
pi := P(A|Fi). Theoretically, the best possible forecast with this information is the revealed estimator

p′′
:= P(A|pi : 1 ≤ i ≤ N). (3)

It is clear that
p′′

= grev(p1, . . . , pn)
for some function g = grev; however, it is not possible to explicitly compute g without making further assumptions about
the model.
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