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a b s t r a c t

An asymptotically normal kernel estimator for the positive tail index of right-truncated
data is introduced. A simulation study shows that the proposed estimator performs much
better than the existing ones in terms of bias.
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1. Introduction

Let (Xi, Yi) , 1 ≤ i ≤ N be a sample of size N ≥ 1 from a couple (X, Y) of independent random variables (rv’s) defined
over some probability space (Ω, A, P), with continuousmarginal distribution functions (df’s) F and G respectively. Suppose
that X is truncated to the right by Y, in the sense that Xi is only observed when Xi ≤ Yi. We assume that both survival
functions F := 1− F and G := 1− G are regularly varying at infinity with negative indices−1/γ1 and−1/γ2 respectively.
That is, for any x > 0,

lim
z→∞

F (xz)

F (z)
= x−1/γ1 and lim

z→∞

G (xz)

G (z)
= x−1/γ2 . (1.1)

This class of distributions,which includesmodels such as Pareto, Burr, Fréchet, stable and log-gamma, plays a prominent role
in extreme value theory. Also known as heavy-tailed, Pareto-type or Pareto-like distributions, these models have important
practical applications and are used rather systematically in certain branches of non-life insurance as well as in finance,
telecommunications, geology, and many other fields (see, e.g., Resnick, 2006). Let us denote (Xi, Yi) , i = 1, . . . , n to be the
observed data, as copies of a couple of rv’s (X, Y ), corresponding to the truncated sample (Xi, Yi) , i = 1, . . . ,N , where
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n = nN is a sequence of discrete rv’s which, in virtue of the weak law of large numbers, satisfies nN/N
P
→ p := P (X ≤ Y), as

N →∞. We denote the joint distribution of X and Y by H (x, y) := P (X ≤ x, Y ≤ y). The df H is given by

H (x, y) = P (X ≤ min (x, Y) , Y ≤ y | X ≤ Y) = p−1
 y

0
F (x, z) dG (z) .

The marginal distributions of the rv’s X and Y , respectively denoted by F and G, are equal to F (x) = p−1
 x
0 G (z) dF (z)

and G (y) = p−1
 y
0 F (z) dG (z). The tail of df F simultaneously depends on G and F while that of G only relies on G. By

using Proposition B.1.10 in de Haan and Ferreira (2006), to the regularly varying functions F and G, we show that both
F and G are regularly varying at infinity as well, with respective indices −1/γ := − (γ1 + γ2) / (γ1γ2) and −1/γ2. By
using the definition of γ , Gardes and Stupfler (2015) derived a consistent estimator, for the extreme value index γ1, whose
asymptotic normality is established in Benchaira et al. (2015), under the tail dependence and the second-order regular
variation conditions. Also, Worms and Worms (2016) proposed an estimator for γ1 and proved its asymptotic normality,
by considering a Lynden-Bell integration with a deterministic threshold. More recently, Benchaira et al. (2016) treated the
case of a random threshold and introduced a Hill-type estimator for the tail index γ1 of randomly right-truncated data.
The asymptotic normality of the latter is established by considering the second-order regular variation conditions (2.6)
and (2.7) and the assumption γ1 < γ2. This condition is required in order to ensure that it remains enough extreme data
for the inference to be accurate. In other words, we consider the situation where the tail of the rv of interest X is not too
contaminated by that of the truncating rv Y. In this paper, we derive a kernel-type estimator for γ1, under random right
truncation, in the spirit of the work of Csörgő et al. (1985) in the complete data case. Thereby, for a suitable choice of the
kernel function, we obtain an improved estimator of γ1 in terms of bias. To this end, let K : R → R+ be a fixed function,
that will be called kernel, satisfying the following conditions:

[C1] K is non increasing and right-continuous on R.
[C2] K(s) = 0 for s ∉ [0, 1) and K(s) ≥ 0 for s ∈ [0, 1).
[C3]


R K(s)ds = 1.

[C4] K and its first and second Lebesgue derivatives K′ and K′′ are bounded on R.

As examples of such functions (see, e.g., Groeneboom et al., 2003), we have the indicator kernel K = 1[0,1) and the biweight
and triweight kernels respectively defined by

K2(s) :=
15
8


1− s2

2 1{0≤s<1}, K3(s) :=
35
16


1− s2

3 1{0≤s<1}. (1.2)

For an overview of kernel estimation of the extreme value index with complete data, one refers to, for instance, Hüsler et al.
(2006) and Ciuperca and Mercadier (2010). By using Potter’s inequalities, see e.g. Proposition B.1.10 in de Haan and Ferreira
(2006), to the regularly varying function F together with assumptions [C1] – [C3], we may readily show that

lim
u→∞


∞

u
x−1

F (x)

F (u)
K


F (x)

F (u)


dx = γ1


∞

0
K(s)ds = γ1. (1.3)

An integration by parts yields

lim
u→∞

1

F (u)


∞

u
gK


F (x)

F (u)


log

x
u
dF (x) = γ1, (1.4)

where gK denotes the Lebesgue derivative of the function s→ ΨK (s) := sK (s). Note that, forK = 1[0,1), we have gK = 1[0,1),
then the previous two limits meet assertion (1.2.6) given in Theorem 1.2.2 by de Haan and Ferreira (2006). For kernels K2
and K3, we have

gK2(s) :=
15
8


1− s2

 
1− 5s2


1{0≤s<1}, gK3(s) :=

35
16


1− s2

2 
1− 7s2


1{0≤s<1}.

Let X1:n ≤ · · · ≤ Xn:n be the order statistics pertaining to the sample (X1, . . . , Xn) and k = kn be a (random) sequence of
discrete rv’s such that given n = m, km →∞ and km/m→ 0 as N →∞. Since F is regularly varying at infinity, then Xn−k:n
tends to∞ almost surely. By replacing, in (1.4), u by Xn−k:n and F by the well-known Woodroofe’s product-limit estimator
(Woodroofe, 1985) Fn (x) :=


i:Xi>x exp {−1/ (nCn (Xi))}, with Cn (x) := n−1

n
i=1 1 (Xi ≤ x ≤ Yi), we get

γ1,K =
1

Fn (Xn−k:n)


∞

Xn−k:n
gK


Fn (x)

Fn (Xn−k:n)


log

x
Xn−k:n

dFn (x) ,

as a kernel estimator for γ1. Next, we give an explicit formula forγ1,K. Since F and G are regularly varying at infinity, then
their right endpoints are infinite and so they are equal. Hence, from Woodroofe (1985), we may write


∞

x dF (y) /F (y) =
∞

x dF (y) /C (y), where C (z) := P (X ≤ z ≤ Y ) is the theoretical counterpart of Cn (z) defined above. Differentiating
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