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a b s t r a c t

A changepoint in a time series is a time in which any change in the distributional form
(marginal or joint) of the series occurs. This includes changes in mean or covariance struc-
ture of the time series. Mean level shift changepoints have been shown to dramatically in-
fluence linear trend estimates obtained from a simple linear regression model. This study
provides an asymptotic analysis of a time series regressionmodel experiencing an increas-
ing number of mean level shifts at known times. It is shown that onemay consistently esti-
mate any finite number of unknown parameters in a time series polynomial regression, so
long as two or more consecutive observations without a changepoint occurs infinity often
in the limit.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

This study investigates a time series regression model experiencing persistent level shifts that occur at known times.
These level shift times are the changepoints of themodel. The statistical advance is that the errors in themodel are assumed
to be stationary and are not limited to the IID setting. The number of changepoints is allowed to tend to infinity as time
increases.

This work is driven by climatological considerations, as climatological series frequently experience mean level shifts
which can dramatically influence regression parameter estimates (Lu and Lund, 2007; Solow, 1987). Such shifts may occur
whenever a station location, observer, or instrumentation are changed. These times are frequently recorded in the associated
station metadata and are considered known in this study. While this problem was investigated with climatological
applications in mind, it does fit other applications as well. For example, each time one of the 30 companies is changed in
the Dow Jones industrial average, a mean level shift can occur. Since the time of the substitution is reported, it is considered
known. Scenarios in quality control also arise where a mean level shift in manufacturing output occurs each time a part or
worker is replaced.

While not the focus of this study, the problem of identifying unknown changepoints remains an active area of research.
Recent works by Aue and Horváth (2013) and Jandhyala et al. (2013) discuss inference in this setting. In particular,
identification of unknown changepoints in polynomial regression designs are discussed in Aue et al. (2008, 2009), Esterby
and El-Shaarawi (1981), MacNeill (1978), and Muggeo (2003), for example. While methods for inference in the presence of
undocumented changepoints are of interest in the literature (Bai and Perron, 1998; Chen, 2014, are examples), there is still
much room for theoretical development of the documented changepoint inference problem. This work extends the results
in Woody and Lund (2014) to a regression model with a stationary error process.

2. The model

Let {Yt} be a time series sampled from the General Linear Model (GLM)
Yt = µ + θ1f1(t) + · · · + θmfm(t) + ϵt , t = 1, 2, . . . , n, (2.1)
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where the regression factors f1(t), . . . , fm(t) are known functions of time, θ1, . . . , θm are unknown parameters, µ is an
intercept term, and {et} is a mean zero stationary error process. A vast literature exists on the GLM parameter estimation
in (2.1), with a thorough asymptotic treatment in Bickel and Doksum (2001), for example. The model in (2.1) is restrictive
in that µ is constant. To accommodate persistent mean level shifts, a version of (2.1) that allows for multiple level shifts is
studied:

Yt = δt + θ1f1(t) + · · · + θmfm(t) + ϵt , t = 1, 2, . . . , n, (2.2)

where the {δt} term models the mean level shift. For a fixed sample size n and t ∈ {1, 2, . . . , n}

δt =


∆1, 1 ≤ t < τ1
∆2, τ1 ≤ t < τ2
...

...
∆k+1, τk ≤ t < n + 1,

where k = k(n) denotes the number of changepoints up to time n. Let τ0 < τ1 < · · · < τk denote the ordered known level
shift times, with τ0 = 1 and τk+1 = n+ 1 by convention. Note that τ0, . . . , τk partition {1, . . . , n} into k(n)+ 1 regimes. Let
r index the rth regime of the data and set Hr = {τr−1, . . . , τr − 1} as the set of times when the series is in regime r . Denote
the length of the rth regime by

ℓr = τr − τr−1, (2.3)

for r = 1, . . . , k(n) + 1. If one sets δr(t) =
k(n)+1

r=1 1{t∈Hr }δr , then (2.2) may be written as

Yt = δr(t) + θ1f1(t) + · · · + θmfm(t) + ϵt , (2.4)

where r(t) ∈ {1, . . . , k + 1} is the regime the series experienced at time t . The errors {et}nt=1 are assumed stationary, with
an autocovariance structure specified below. Since k(n) → ∞ as n → ∞, the model accommodates an infinite number of
level shifts in the limit. Woody and Lund (2014) construct estimators for θ1, . . . , θm in the model presented in Eq. (2.4) with
IID errors as

2̂(n) = [XT (n)X(n)]−1XT (n)Y(n), (2.5)

where

Xt,v(n) := fv(t) − f̄v,r(t), v = 1, 2, . . . ,m; t = 1, 2, . . . , n, (2.6)

and

f̄u,r =
1
ℓr


t∈Hr

fu(t). (2.7)

To ease notation, the columns of X(n) are assumed to be linearly independent for all n. This is tantamount to assuming that
the factors in (2.4) are identifiable.

Let X∗,v(n) = (X1,v, . . . , Xn,v)
T be an n × 1 vector containing the vth column of X(n). The notation Xv(n) = X∗,v(n) is

used in what follows. However, the tth element in the ith column will be referenced as Xt,i(n). Define the inner products

⟨Xu(n),Xv(n)⟩ =

k+1
r=1


t∈Hr

(fu(t) − f̄u,r)(fv(t) − f̄v,r), u, v = 1, 2, . . . ,m. (2.8)

For an n × 1 vector v = (v1, . . . , vn)
T , let ∥ · ∥ denote the Euclidean squared-norm, formulated as

∥v∥ =


n

t=1

v2
t

1/2

.

Additionally, define the Euclidean matrix norm of an n × n matrix A by

∥A∥ = max
∥b∥=1

∥Ab∥

where b is an n × 1 vector of unit length.
Finally, two more matrices which are introduced in Woody and Lund (2014) will be of use. Let E(n) denote the diagonal

matrix⟨X1(n),X1(n)⟩ · · · 0
...

. . .
...

0 . . . ⟨Xm(n),Xm(n)⟩

 . (2.9)
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