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1. Introduction
1.1. Context and scope of this note

This note presents a short proof of the duality formula for ¢-divergences defined through differentiable convex functions
¢ in parametric models and discusses some unexpected phenomena in the context of exponential families. First versions
of this formula appear in Liese and Vajda (1987, p. 33), in Broniatowski (2003) in the context of the Kullback-Leibler di-
vergence and in Keziou (2003) in a general form. The paper (Broniatowski and Leorato, 2006) introduces this form in the
context of minimal x2-estimation; a global approach to this formulation is presented in Broniatowski and Keziou (2006).
Independently Liese and Vajda (2006) have obtained a similar expression based on a much simpler argument as presented
in all the above mentioned papers (formula (118) in their paper); however the proof of their result is merely sketched and
we have found it useful to present a complete treatment of this interesting result in the parametric setting, in contrast with
the aforementioned approaches.

The main interest of the resulting expression is that it leads to a wide variety of estimators, by a plug in method of the
empirical measure evaluated on the current data set; so, for any type of sampling its estimators and inference procedures, for
any ¢-divergence criterion. In the case of the simple i.i.d. sampling resulting properties of those estimators and subsequent
inferential procedures are studied in Broniatowski and Keziou (2009).

A striking fact is that all minimum divergence estimators defined through this dual formula coincide with the MLE in
exponential families. They henceforth enjoy strong optimality under the standard exponential models, leading to estimators
different from the MLE under different models than the exponential one. Also this result proves that MLE'’s of parameters
of exponential families are strongly motivated by being generated by the whole continuum of ¢-divergences. It also has
the consequence that robustness properties (or any property not shared by the MLE) cannot be expected by minimum
divergence estimators, but for models different from exponential ones.

This note results from joint cooperation with late Igor Vajda.
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1.2. Notation

Let # := {Py, 0 € O} be an identifiable parametric model on R® where © is a subset of R?. All measures in & will be
assumed to be equivalent measures sharing therefore the same support. The parameter space ® need not be open in the
present setting. It may even happen that the model includes measures which would not be probability distributions; cases of
interest cover models including mixtures of probability distributions; see Broniatowski and Keziou (2009). Let ¢ be a proper
closed convex function from ] — oo, +0o0[ to [0, 400] with ¢(1) = 0 and such that its domain dom ¢ := {x € R such that
@(x) < oo} is an interval with endpoints a, < 1 < b, (which may be finite or infinite). For two measures P, and Py in »
the ¢-divergence between Q and P is defined by

0) = AP dp,
o(a,0) = fst<%(x)) 5 (X).

In a broader context, the ¢-divergences were introduced by Csiszar (1963) as “f-divergences”. The basic property of
@-divergences states that when g is strictly convex on a neighborhood of x = 1, then

¢(a,0) =0 ifandonlyif o =6.

We refer to Liese and Vajda (1987, Chapter 1) for a complete study of those properties. Let us simply quote that in general
¢(a, 0) and ¢ (0, o) are not equal. Hence, ¢-divergences usually are not distances, but they merely measure some differences
between two measures. A main feature of divergences between distributions of random variables X and Y is the invariance
property with respect to common smooth change of variables.

1.3. Examples of p-divergences

The Kullback-Leibler (KL), modified Kullback-Leibler (KL), x %, modified x2 (x2), Hellinger (H), and L; divergences are
respectively associated to the convex functions ¢(x) = xlogx —x + 1, ¢(x) = —logx +x — 1, p(x) = %(x — 1% o) =
%(x — 1)?%/x, (%) = 2(/x — 1)? and ¢(x) = |x — 1|. All these divergences except the L; one, belong to the class of the so
called “power divergences” introduced in Read and Cressie (1988) (see also Liese and Vajda, 1987, Chapter 2), a class which
takes its origin from Rényi (1961). They are defined through the class of convex functions

X —yx+y—1
x €10, +00l> ¢, (x) = — LTV T2 (1)
Yy =1
ify e R\ {0, 1}, go(x) := —logx +x — 1 and ¢4 (x) := xlogx — x + 1. So, the KL-divergence is associated to ¢, the KL, to
@0, the x? to ¢, the x?2 to ¢_; and the Hellinger distance to ¢ .

1.4. Hypotheses

It may be convenient to extend the definition of the power divergences in such a way that ¢ («, 6) may be defined (pos-
sibly infinite) even when P, or P, is not a probability measure. This is achieved setting

X €] — 00, +o0o[—~ {f_’”o(::) i?i 2][8’ :OC’)OO[[: (2)
when dom ¢ = R*/ {0}. Note that for the x2-divergence, the corresponding ¢ function ¢;(x) := %(x — 1)? is defined and
convex on whole R; an example when $ may contain signed finite measures and not be restricted to probability measures
is considered in Broniatowski and Leorato (2006) in relation with a two components mixture model & := {P = 6P; + (1 —
6)P,} with P; and P, two known probability measures and where 6 is allowed to assume values in an open neighborhood
® of 1, in order to provide a test for HO := {0 = 1} vs H1 := {0 < 6 < 1}, with 0 an interior point in ©.

Considering any ¢-divergence with ¢ a differentiable function but the likelihood divergence defined through the diver-

gence function ¢, when 67 in int® is defined as the true parameter of the distribution of the i.i.d. sample (X1, ..., X;) itis
convenient to assume that
There exists a neighborhood U of 67 for which ¢ (0, 0”) is finite whatever 6 and ' in U. (A)

In the case when ¢ = ¢, which yields the MLE, then the condition (A) is reduced to

There exists a neighborhood U of 6r for which / (log pg) pe, dA is finite whatever 6 in U (A)

where A dominates &, which is the classical assumption for the existence and consistency of the MLE under simple sampling.
We will only consider divergences defined through differentiable functions ¢, which we assume to satisfy

There exists a positive § such that forall cin [1 —§, 1+ §],
(RC) we can find numbers c¢q, ¢y, c3 such that
@(cx) < c19(x) + ¢ |x| + c3, for all real x.

Condition (RC) holds for all power divergences including KL and KL;, divergences.



Download English Version:

https://daneshyari.com/en/article/1151501

Download Persian Version:

https://daneshyari.com/article/1151501

Daneshyari.com


https://daneshyari.com/en/article/1151501
https://daneshyari.com/article/1151501
https://daneshyari.com

