Statistics and Probability Letters 117 (2016) 23-30

Contents lists available at ScienceDirect

STATISTICS &
PROBABILITY
ETTERS,

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Nonparametric estimation of possibly similar densities @CmssMark
Alan P. Ker

Department of Food, Agricultural and Resource Economics, University of Guelph, Canada

ARTICLE INFO ABSTRACT

Article history: A class of nonparametric methods is developed to estimate a set of possibly similar densities
Received 19 October 2015 that offers greater efficiency if they are similar while seemingly not losing any if they are
Received in revised form 16 March 2016 not. Theoretical properties and finite sample performance are promising.

Accepted 16 March 2016 © 2016 Elsevier B.V. All rights reserved.

Available online 10 May 2016

Keywords:

Multiple density estimation
Combined estimators
Kernel methods

1. Introduction

The standard univariate kernel density estimator (KDE) can be expressed as

Feo=/m Y Kn(x — X)) (1)
where h is the bandwidth or smoothing parameter, K, (u) = (1/h)K(u/h), K is the kernel function, and the summation is
over the sample (Xi, ..., X;). Throughout, K is assumed to be a square integrable symmetric probability density function

with a finite second moment and compact support. Also, denote 5 (K) = [ u*K(u)du and R(K) = [ K (u)du. Letting f be
the unknown density of interest, standard properties for second order kernels are

Ef(x) —f(x) = /K(u)[f(x — hu) — f(x)1du = 1/2h* > (K)f" (x) + O(h*),
var(f(x)) = (nh)"'f(ORK) + o((nh) 1),

(2)

and thus

MSE(f(x)) = (nh)~"'f CORK) + 1/4h* (u2(K))* (" (x))* + o((nh) ™" + h*),
MISE(f) = (nh)"'R(K) + 1/4h* (2 (K))*R(f") + o((nh) ™" + h*).

There exist many empirical situations that require density estimates for multiple units which, to some unknown extent,
are similar in structure. This manuscript considers an alternative but not uncommon data environment, one where there
exist realizations {Xi1, ..., X1, ..., Xq1, ..., Xqn} from Q densities fi, ..., fo which may possibly be similar. The main
objective is to design a nonparametric estimator that has superior performance, relative to the KDE applied separately to the
individual samples, when the true densities are identical or similar, while not losing much if they are dissimilar. In addition,
the estimator must not require the extent or form of similarity as this is generally unknown in empirical applications.

(3)
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The intuition of the proposed estimator is as follows: if the densities were known to be identical, the logical approach
would be to pool the Q samples and estimate a single density. However, if the densities are not identical, this estimator is
inconsistent. The idea proposed here is to combine a nonparametric estimate based on the pooled data with a nonparametric
estimate based on the individual data in much the same fashion as a parametric estimate is combined with a nonparametric
estimate in semiparametric estimation. These combined nonparametric and parametric estimators are designed with the
same goal in mind: to offer superior performance if the underlying parametric assumption is correct while not losing much
if it is incorrect. Hjort and Glad (1995) introduced an estimator which begins with a parametric estimate and then estimates
a nonparametric correction in attempts to reduce bias. If the parametric start is sufficiently close to the true density, the
correction factor function will be less rough, and thus estimated nonparametrically with lower bias. This estimator was
shown to have promise in finite samples as well as nice asymptotic properties (O(n~!) if the parametric assumption is
correct and O(n~*?) if it is not). As such, their estimator represents an ideal starting point to develop a combined estimator
in an expanded data environment.

2. Proposed estimator

We start with a KDE based on the pooled samples, denote g, and then multiply a nonparametric estimate of the
individual correction function, r;(x) = fi(x)/g(x). Note, g(x) is a mixture of the Q densities, that is g(x) = 1/Q Y_f, *).!
The motivation is that if the densities are identical or similar, the pooled estimate represents a reasonable start from
which to estimate a correction factor function for each individual density. The correction factor function is estimated by
fi(x) = Y_(1/m)Kyp(x — Xy) /& (X;) thus leading to the proposed estimator

i) = §@fi0 =Y _(1/mKn(x — Xy 28 (4)
g(Xij)
where X; is the sample corresponding to density f;.

The motivation behind the proposed estimator follows from Hjort and Glad (1995) and generalized by Naito (2004):
reduce the global curvature of the underlying function being estimated thereby reducing bias. The correction factor function
will have less global curvature if the start is sufficiently close to the unknown density. Unlike the combined parametric and
nonparametric estimator, our start is nonparametric which begs the question: where do any possible efficiency gains come
from? In contrast to the Hjort and Glad (1995) estimator, our approach makes use of extraneous sample data to estimate
the start density. As a result, the total curvature that is being estimated with the individual sample may be reduced yielding
a lower bias. Interestingly, the proposed estimator resembles the higher order bias estimator of Jones et al. (1995)

= Aoa 1 f&x)
) =fOrx) =-) Ki(x—Xj) =—, (5)
fe=f DK (x—X) %
where f (x) is their start which is the KDE based on the individual sample.” Note that the three estimators — Jones et al. (1995)
estimator, Hjort and Glad (1995) estimator, and the proposed estimator - are identical in form but each uses different start
estimates. Hjort and Glad (1995) use a parametric start, Jones et al. (1995) use a nonparametric start based on the individual
sample data only, and the proposed estimator uses a nonparametric start based on the pooled sample data. All reduce to
the standard kernel when their start is uniform over the support. While this situation would be quite rare for the Jones et al.
(1995) and Hjort and Glad (1995) estimators, this is less rare for the proposed estimator. If the underlying densities are quite
dissimilar, the smoothing parameter associated with the pooled estimate gets large leading to a fairly uniform start and thus
the proposed estimator collapses to the KDE.

3. Theory

Let g(x) be a KDE based on the pooled sample data. That is,

. 1

80 =4, > K, (x — Xig). (6)
with properties

EE() —g(®) = 1/22u,(K)g" (x) + O(h), and

(7)

var(g(x)) = (Nhy)"'g(RK) + o((Nhy) ™),

1 The proposed estimator as presented assumes a balanced design. This ensures that g exists as the equally weighted mixture of the density functions
fireon,s fo- An unbalanced design is inconsequential empirically as & is a simple kernel estimate based on the pooled sample. Theoretically however, in
an unbalanced design the underlying mixture weights change as the sample size changes and thus g would be a function of the sample size which is
unappealing.

2 Jones et al. (1995) use the term pilot instead of start.
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