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a b s t r a c t

We propose a residual-based empirical distribution function to estimate the distribution
function of the errors of a heteroskedastic nonparametric regression with responses miss-
ing at random based on completely observed data, and we show this estimator is asymp-
totically most precise.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

An important problem encountered in practice occurs when variation in the data is found to be dynamic. A typical
example is when responses Y are regressed onto a vector ofm covariates X and the errors of that regression have variation
changing in X . Under this condition, many statistical procedures no longer provide consistent inference. For example,
consider a study of crop yields under different application amounts of a fertilizer. Should the variation in yields dependon the
amount of fertilizer applied, then the classical F-test will no longer provide a consistentmethod of inference for a regression
of the yields toward the amount of fertilizer applied because it assumes the model errors have constant variation. Examples
of heteroskedastic data may be found in Greene (2000), Vinod (2008), Sheather (2009) and Asteriou and Hall (2011).

We are interested in the case where the responses are missing and observe a random sample (X1, δ1Y1, δ1), . . . ,
(Xn, δnYn, δn) of data that is composed of independent and identically distributed copies of a base observation (X, δY , δ).
Here δ is an indicator variable taking values one, when Y is observed, and zero, otherwise. Throughout this article, we will
interpret a datum (X, 0, 0) as corresponding to a categorically missing response, i.e. when δ = 0, the first zero in the datum
only describes the product 0 × Y = 0, almost surely, because we make the common assumption that P(|Y | < ∞) = 1. For
this work, we make the following assumption concerning the covariates X:

Assumption 1. The covariate vector X has a distribution that is quasi-uniform on the cube [0, 1]m; i.e. X has a density that
is both bounded and bounded away from zero on [0, 1]m.
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We assume the responses are missing at random (MAR), and, paraphrasing Chown and Müller (2013), we will refer to
the probability model with responses missing at random as the MARmodel. This means the distribution of δ given both the
covariates X and the response Y depends only on the covariates X , i.e.

P(δ = 1|X, Y ) = P(δ = 1|X) = π(X). (1.1)
Since we do observe some responses Y , we will assume that π is almost everywhere bounded away from zero on [0, 1]m.
It is then clear that Eδ = E[π(X)] is positive. The MAR assumption is commonly used and it is very reasonable in many
missing data situations (see Chapter 1 of Little and Rubin, 2002).

In this article we study the heteroskedastic nonparametric regression model
Y = r(X)+ σ(X)e,

with the error e independent of the covariate vector X . In order to identify the functions r and σ , we will additionally
assume the error e has mean zero and unit variance. For this work, we are interested in the case of smooth functions r and
σ (see below for an explicit definition), and we will assume that σ is a positive-valued function so that it is a well-defined
scale function. Hence, the model above is a well-defined heteroskedastic nonparametric regression model with identifiable
components. This model is closely related to that studied in Chown and Müller (2013), who study the case of σ(·) ≡ σ0, a
positive constant, i.e. σ(x) = σ0 for almost every x. As a consequence, many results will be familiar. Here we will estimate
the two functions r and σ with nonparametric function estimators that are constructed from the assumed smoothness
properties of these functions. We will then use these estimates in our proposed estimator of the distribution function of the
errors F .

To begin, we first consider (1.1) and observe that
E[δh(e)] = EδE[h(e)] and E[δh(e)|X] = π(X)E[h(e)]

for suitable measurable functions h. The relations above naturally lead to complete case estimators for each of F , r and σ .
We investigate the residual-based empirical distribution function, F̂c , given as

F̂c(t) =
1
N
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, t ∈ R. (1.2)

Here N =
n

j=1 δj is the number of completely observed pairs (X, Y ) and the subscript ‘‘c ’’ indicates the estimator is
based on the subsample of complete cases described below, which is, in general, different from the original sample of
data. Similar to the estimator of Chown and Müller (2013), this is a complete case estimator. To explain the idea, we
first take our sample (X1, δ1Y1, δ1), . . . , (Xn, δnYn, δn) and reorder it according to whether or not δj = 1, j = 1, . . . , n.
This means we rewrite it as (X1, Y1, 1), . . . , (XN , YN , 1), (XN+1, 0, 0), . . . , (Xn, 0, 0). Due to the i.i.d. nature of the original
sample, ordering the data in this way both changes nothing and highlights the existence of two subsamples. We can write
the first subsample as (X1, Y1), . . . , (XN , YN), where N ≤ n is the random size of this subsample, which we call the complete
cases. Hence, our estimator uses only the part of the original sample where responses Y are actually observed. This means
we use only the available residuals ε̂j,c = {Yj − r̂c(Xj)}/σ̂c(Xj), j = 1, . . . ,N , where r̂c is a suitable complete case
estimator for the regression function r and σ̂c is a suitable complete case estimator of the scale function σ . Since we are
only using a part of the original data based on the auxiliary information that δ = 1, which now has different stochastic
properties than the original data, we will, nevertheless, argue below that F̂c is both a consistent and an efficient estimator
for F .

In this work, we use local polynomial estimators of the first and second conditional moments r(x) = E(Y |X = x)
and r2(x) = E(Y 2

|X = x), respectively, which we will use later to construct our estimators r̂c and σ̂c . Local polynomial
estimation follows naturally by a Taylor expansion argument, and, therefore, follows from both of the functions r and σ
satisfying certain smoothness conditions; i.e. we assume both r and σ lie on the Hölder space of functions H(d, ϕ) with
domain [0, 1]m. Paraphrasing Müller et al. (2009), a function from [0, 1]m to R belongs to H(d, ϕ), if it has continuous
partial derivatives up to order d and the partial derivatives of order d are Hölder with exponent 0 < ϕ ≤ 1. We will write
H1(d, ϕ) for the unit ball of H(d, ϕ) (see Müller et al., 2009, for an explicit definition).

To define the local polynomial estimators of degree d, we first introduce somenotation. Let I(d) be the set ofmulti-indices
i = (i1, . . . , im) such that i1 + · · · + im ≤ d. These multi-indices correspond with the partial derivatives of r and r2 (and
hence σ ) whose order is at most d. The local polynomial estimators of r and r2 are respectively given by γ̂a,0, for a = 1, 2,
where γ̂a,0 denotes the 0 = (0, . . . , 0) entry of the vector

γ̂a = argmin
γ=(γi)i∈I(d)
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, a = 1, 2.

Here

ψi(x) =
xi11
i1!

· · ·
ximm
im!
, x = (x1, . . . , xm) ∈ [0, 1]m,

w(x) = w1(x1) · · ·wm(xm) is a product of densities, and {λn}n≥1 is a sequence of positive numbers satisfying λn → 0, as
n → ∞, which we call a bandwidth. Hence, we introduce our respective function estimators of r and σ pointwise at each
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