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a b s t r a c t

We prove the existence of a multivariate singular skew-normal density function, derive
its moment generating function, and demonstrate that the skewness parameter-vector is
confined to the column space of the singular dispersion matrix.
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1. Introduction

Multivariate data that do not follow a normal distribution arise naturally in a wide variety of fields. Disciplines such as
economics, oceanography, engineering, and the biomedical sciences all produce such data. The skew-normal distribution
has statistical relevance in GARCH modelling, spatial statistics, and Bayesian statistics, to name a few.

Here, we derive the multivariate singular skew-normal (MSSN) probability density function (PDF ). We also establish the
moment generating function (MGF ) of theMSSN randomvariable and utilize it to find themean vector and covariancematrix
of a MSSN random vector. Furthermore, we show that the skewness parameter must be contained in the column space of
the dispersion parameter. To our knowledge, this fact has not been previously stated or verified for the singular case.

We use the following notation throughout the remainder of the paper. Here, Rm×n represents the vector space of all
m × n matrices over the real field R, Rn represents the space of all n × n vectors over R, Rn represents the vector space of
all n × 1 matrices over R, RS

n represents the cone of all n × n symmetric matrices of Rn, and R≥
n and R>

n represent the cone
of all symmetric nonnegative-definite and positive-definite matrices in Rn, respectively. For the matrix A ∈ Rm×n, N (A)
denotes the null space and C(A) the column space. The Moore–Penrose pseudoinverse of A is represented by A+. Finally,
letting λi(A) denote the ith eigenvalue of A ∈ RS

n, we denote the product of the r non-zero eigenvalues by

detkA ≡

k
i=1

λi (A) , (1)

where rank (A) = k < n.
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The remainder of the paper is organized as follows. In Section 2, we discuss the multivariate skew-normal (MSN) and
multivariate singular normal (SMN) distributions. In Section 3, we determine the MGF of a multivariate singular skew-
normal randomvector x ∈ Rp.We then utilize theMSSNMGF to determine theMSSN PDF aswell as themean and covariance
matrix. Furthermore, we demonstrate that the skewness parameter vector must be contained in the column space of the
dispersion matrix.

2. Preliminaries

2.1. The multivariate skew-normal distribution

The extension of the univariate normal density function family to one that incorporates truncation through a population
selectionmechanismwas first brought about by de Helguero (1908). One can find a discussion concerning the importance of
this research in Azzalini and Regoli (2012). However, the first appearance of a density function equivalent to the univariate
skew-normal density function appeared in Birnbaum (1950), though the objective of this development was not as an
extension to the normal density function. Other early occurrences of density functions that are equivalent to the skew-
normal density include (Roberts, 1966; O’Hagan and Leonard, 1976; Aigner et al., 1977). The present-day univariate skew-
normal distribution was developed by Azzalini (1985) as an extension of the normal density function family and further
developed by Azzalini (1986) to incorporate an additional shape parameter.

Azzalini and Dalla Valle (1996) first introduced the MSN distribution. Numerous authors have studied the MSN and
its applications, including Arnold et al. (2002), Liseo and Loperfido (2003), Azzalini (2005), Vernic (2005), Vernic (2006),
Arellano-Valle and Azzalini (2006) and Arellano-Valle and Azzalini (2008).

In particular, Azzalini and Capitanio (1999) have defined the MSN distribution, provided linear and quadratic
forms, discussed the location and scale parameters, and identified several applications of the multivariate skew-normal
distribution. Loperfido (2010) has determined linear functions thatmaximize skewness and kurtosis and proposedmeasures
of shape and non-normality, which are functions of the skewness parameter. Also, Loperfido (2004) has proposed the
generalized skew-normal distribution,which generalizes theMSN distribution. A nice set of applications of the skew-normal
and MSN distributions is provided in Azzalini and Capitanio (1999) and Genton (2004) as well as other papers.

Here, we use the following definition of theMSN PDF, given by Vernic (2006).

Definition 1. A randomvector x ∈ Rp has amultivariate skew-normal distributionwith skewness parameter γ ∈ Rp, written
x ∼ MSNp (µ, 6, δ0, γ), if its density function is

p(x) =
1

Φ (δ0)
φp (x; µ, 6) Φ


δ0 + γ ′ 6−1(x − µ)

1 − γ ′ 6−1γ


, (2)

where µ ∈ Rp, 6 ∈ R>
p such that γ ′6−1γ < 1, δ0 is a real number,

φp(x; µ, 6) =
1

(2π)p/2 |6|
1/2 exp


−

1
2

(x − µ)′ 6−1 (x − µ)


, (3)

is the multivariate normal PDF, and Φ(·) is the univariate standard normal cumulative distribution function.
One attractive property of the MSN distribution is that when the skewness parameter γ = 0, then (2) reduces to (3).

Otherwise, the parameter vector γ regulates the skewness. Authors such as Arnold et al. (2002) and Azzalini and Capitanio
(1999) have chosen δ0 = 0 so that (2) simplifies to

q (x) = 2φp (x; µ, 6) Φ


γ ′6−1 (x − µ)

1 − γ ′6−1γ


.

The MSN family has properties similar to those of the normal family with two exceptions: it lacks closure for the joint
distribution of independent members of the MSN family and closure under linear combinations other than those given by
nonsingular matrices.

2.2. The singular multivariate normal distribution

Awell-known fact is that the PDF of a normally distributed random vector with singular covariancematrix does not exist
with respect to the Lebesgue measure on Rp. However, Khatri (1968) has shown that a multivariate normal PDF exists on a
subspace of Rp. The author (van Perlo-ten Kleij, 2004) has defined the singular multivariate normal distribution as follows.

Definition 2. Let x be a random vector with mean µ ∈ Rp and 6 ∈ R≥
p such that rank(6) = k < p. Then, x is said to have a

singular multivariate normal distribution, written x ∼ SMNp (µ, 6), if the PDF of x is

φS
p(x; µ, 6) ≡ (2π)−p/2 [detk6]1/2 exp


−

1
2
(x − µ)′6+(x − µ)


. (4)
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