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a b s t r a c t

Let π be a positive continuous target density on R. Let P be the Metropolis–Hastings
operator on the Lebesgue space L2(π) corresponding to a proposal Markov kernel Q on R.
When using the quasi-compactness method to estimate the spectral gap of P , a mandatory
first step is to obtain an accurate bound of the essential spectral radius ress(P) of P . In
this paper a computable bound of ress(P) is obtained under the following assumption on
the proposal kernel: Q has a bounded continuous density q(x, y) on R2 satisfying the
following finite range assumption : |u| > s ⇒ q(x, x + u) = 0 (for some s > 0). This result
is illustrated with RandomWalk Metropolis–Hastings kernels.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let π be a positive distribution density on R. Let Q (x, dy) = q(x, y)dy be a Markov kernel on R. Throughout the paper
we assume that q(x, y) satisfies the following finite range assumption: there exists s > 0 such that

|u| > s =⇒ q(x, x + u) = 0. (1)

Let T (x, dy) = t(x, y)dy be the nonnegative kernel on R given by

t(x, y) := min

q(x, y),

π(y) q(y, x)
π(x)


(2)

and define the associated Metropolis–Hastings kernel:

P(x, dy) := r(x) δx(dy)+ T (x, dy) with r(x) := 1 −


R
t(x, y) dy, (3)

where δx(dy) denotes the Dirac distribution at x. The associatedMarkov operator is still denoted by P , that is we set for every
bounded measurable function f : R → C:

∀x ∈ R, (Pf )(x) = r(x)f (x)+


R
f (y) t(x, y) dy. (4)
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In the context of Monte Carlo Markov Chain methods, the kernel Q is called the proposal Markov kernel. We denote by
(L2(π), ∥·∥2) the usual Lebesgue space associatedwith the probabilitymeasureπ(y)dy. For convenience, ∥·∥2 also denotes
the operator norm on L2(π), namely: if U is a bounded linear operator on L2(π), then ∥U∥2 := sup∥f ∥2=1 ∥Uf ∥2. Since

t(x, y)π(x) = t(y, x)π(y), (5)

we know that P is reversible with respect toπ and thatπ is P-invariant (e.g. see Roberts and Rosenthal, 2004). Consequently
P is a self-adjoint operator on L2(π) and ∥P∥2 = 1. Now define the rank-one projectorΠ on L2(π) by

Π f := π(f )1R with π(f ) :=


R
f (x) π(x) dx.

Then the spectral radius of P − Π is equal to ∥P − Π∥2 since P − Π is self-adjoint, and P is said to have the spectral gap
property on L2(π) if

ϱ2 ≡ ϱ2(P) := ∥P −Π∥2 < 1.

In this case the following property holds:

∀n ≥ 1, ∀f ∈ L2(π), ∥Pnf −Π f ∥2 ≤ ϱ n
2 ∥f ∥2. (SG2)

The spectral gap property on L2(π) of a Metropolis–Hastings kernel is of great interest, not only due to the explicit
geometrical rate given by (SG2), but also since it ensures that a central limit theorem (CLT) holds true for additive functional
of the associated Metropolis–Hastings Markov chain under the expected second-order moment conditions, see Roberts and
Rosenthal (1997). Furthermore, the rate of convergence in the CLT is O(1/

√
n) under third-order moment conditions (as for

the independent and identically distributed models), see details in Hervé and Pène (2010) and Ferré et al. (2012).
The quasi-compactness approach can be used to compute the rate ϱ2(P). This method is based on the notion of essential

spectral radius. Indeed, first recall that the essential spectral radius of P on L2(π), denoted by ress(P), is defined by (e.g. see
Wu, 2004 for details):

ress(P) := lim
n
(inf ∥Pn

− K∥2)
1/n (6)

where the above infimum is taken over the ideal of compact operators K on L2(π). Note that the spectral radius of P is one.
Then P is said to be quasi-compact onL2(π) if ress(P) < 1. Second, if ress(P) ≤ α for someα ∈ (0, 1), then P is quasi-compact
on L2(π), and the following properties hold: for every real number κ such that α < κ < 1, the set Uκ of the spectral values
λ of P satisfying κ ≤ |λ| ≤ 1 is composed of finitely many eigenvalues of P , each of them having a finite multiplicity
(e.g. see Hennion, 1993 for details). Third, if P is quasi-compact on L2(π) and satisfies usual aperiodicity and irreducibility
conditions (e.g. see Meyn and Tweedie, 1993), then λ = 1 is the only spectral value of P with modulus one and λ = 1
is a simple eigenvalue of P , so that P has the spectral gap property on L2(π). Finally the following property holds: either
ϱ2(P) = max{|λ|, λ ∈ Uκ , λ ≠ 1} if Uκ ≠ ∅, or ϱ2(P) ≤ κ if Uκ = ∅.

This paper only focuses on the preliminary central step of the previous spectral method, that is to find an accurate bound
of ress(P). More specifically, we prove that, if the target density π is positive and continuous on R, and if the proposal kernel
q(·, ·) is bounded continuous on R2 and satisfies (1) for some s > 0, then

ress(P) ≤ αa with αa := max(ra, r ′

a + βa) (7)

where, for every a > 0, the constants ra, r ′
a and βa are defined by:

ra := sup
|x|≤a

r(x), r ′

a := sup
|x|>a

r(x), βa :=

 s

−s
sup
|x|>a


t(x, x + u) t(x + u, x) du. (8)

This result is illustrated in Section 2 with Random Walk Metropolis–Hastings (RWMH) kernels for which the proposal
Markov kernel is of the form Q (x, dy) := ∆(|x − y|) dy, where ∆ : R → [0,+∞) is an even continuous and compactly
supported function.

In Atchadé and Perron (2007) the quasi-compactness of P on L2(π) is proved to hold provided that (A) the essential
supremum of the rejection probability r(·) with respect to π is bounded away from unity; (B) the operator T associated
with the kernel t(x, y)dy is compact on L2(π). Assumption (A) on the rejection probability r(·) is a necessary condition for
P to have the spectral gap property (SG2) (see Roberts and Tweedie, 1996). But this condition, which is quite generic from
the definition of r(·) (see Remark 3), is far to be sufficient for P to satisfy (SG2). The compactness Assumption (B) of Atchadé
and Perron (2007) is quite restrictive, for instance it is not adapted for randomwalk Metropolis–Hastings kernels. Here this
compactness assumption is replaced by the condition r ′

a + βa < 1. As shown in the examples of Section 2, this condition is
adapted to RWMH.

In the discrete state space case, a bound for ress(P) similar to (7) has been obtained in Hervé and Ledoux (in press). Next
a bound of the spectral gap ϱ2(P) has been derived in Hervé and Ledoux (in press) from a truncation method for which the
control of the essential spectral radius of P is a central step. It is expected that, in the continuous state space case, the bound
(7) will provide a similar way to compute the spectral gap ϱ2(P) of P . This issue, which is much more difficult than in the
discrete case, is not addressed in this work.
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