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a b s t r a c t

A simple constructive approach to imposing a mean constraint in a finite mixture of
multivariate Gaussian densities is proposed. All parameters in the model except for
one have closed-form full conditional distributions and are fit through a simple Markov
chain Monte Carlo algorithm. For illustration, the mean-constrained finite mixture is
implemented in a linearmixedmodel. Simulations reveal that themean-constrainedmodel
is able to precisely estimate the regression coefficients and mean-constrained random
effects distribution simultaneously. An analysis of the Framingham cholesterol data shows
that, with relatively simple structure, the model has competitive predictive power with
earlier approaches.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

This paper proposes a mean-constrained finite mixture of multivariate Gaussian densities. The model proposed is
constructive, i.e. themean-constraint is built into themodel, versus approaches which imposemean constraints after fitting
(e.g. Li et al., 2010; Jara et al., 2009; Yang andDunson, 2010) or approaches that impose the constraints during nonparametric
estimation (e.g. Hall and Presnell, 1999; Eloyan and Ghosh, 2011; Laurence et al., 2014). Mean constraints are necessary in
many inferential situations, including generalized linear mixed models (e.g. Jara et al., 2009), structural equation models
(e.g. Yang and Dunson, 2010), and in the modeling of extreme value distributions (e.g. Boldi and Davison, 2007), to name a
few.

Linearmixedmodels (LMM) arewidely applied in the analysis of longitudinal and other types of repeatedmeasures data.
An open question in LMM is how to best model the random effects. Classical approaches assume that the random effects
follow a mean-zero Gaussian distribution (Laird and Ware, 1982). However, it has been found that this assumption is often
violated, affecting prediction for subjects not in the data set (Claeskens and Hart, 2009). To relax this assumption, novel
approaches have been proposed to model the random effects more flexibly including the Dirichlet process prior (Kleinman
and Ibrahim, 1998), Hermite expansions (Zhang and Davidian, 2001), penalized Gaussians over a grid (Ghidey et al., 2004),
and mixtures of multivariate Polya trees (Jara et al., 2009). For identifiability, ideally a random effects distribution should
be centered at zero, enhancing interpretation of fixed effects in terms of population averages. This is a simple constraint for
parametric approaches but becomes challenging for semi- and non-parametric approaches. In Section 2, we introduce the
mean-constrained finite mixture (MCFM) for multivariate density estimation and, for illustration, show how the MCFM can
be used inmixedmodels. In Section 3, we evaluate the performance of the proposedMCFMmodel using a simple simulation
study. Section 4 describes one application of the model on the Framingham cholesterol data and Section 5 concludes the
paper.

∗ Corresponding author.
E-mail addresses: baoj@duq.edu (J. Bao), hansont@stat.sc.edu (T.E. Hanson).

http://dx.doi.org/10.1016/j.spl.2016.05.009
0167-7152/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.spl.2016.05.009
http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spl.2016.05.009&domain=pdf
mailto:baoj@duq.edu
mailto:hansont@stat.sc.edu
http://dx.doi.org/10.1016/j.spl.2016.05.009


94 J. Bao, T.E. Hanson / Statistics and Probability Letters 117 (2016) 93–99

2. Model

Consider the continuous mixture model density

p(y) =

 b

a
p(y|µ(t), σ (t))w(t)dt = E{p(y|µ(T ), σ (T ))},

where T ∼ w(t) is a known density with support (a, b) and E(Y |µ, σ) =


∞

−∞
yp(y|µ, σ)dy = µ. Let Z(t) be a random,

differentiable process over t ∈ (a, b) such that Z(a) = Z(b) and let µ(t) be determined from Z ′(t) = µ(t)w(t). Then

E(Y |Z) = ET |ZEY |T ,Z (Y |T , Z)

= ET |Z


Z ′(T )

w(T )


=

 b

a

Z ′(t)
w(t) w(t)dt

= Z(b) − Z(a) = 0,

for all Z . This model, which forces Y to have mean-zero, is adapted to the finite mixture model case where instead
t ∈ {0, 1, . . . , J}, integration is replaced by summing (or premultiplying by a vector of ones), and differentiation is replaced
by differencing (or premultiplying by any matrix orthogonal to a vector of ones). Since the idea immediately generalizes to
multiple dimensions, we develop the approach for multivariate data from the outset.

Consider p-dimensional data arising from a finite mixture model with J components. Let µ = (µ1, . . . ,µJ), 6 =

(61, . . . , 6J), and π = (π1, . . . , πJ)
′ be component means, covariance matrices, and weights respectively. Assume for now

that π is given. Then

y1, . . . , yn|π, µ, 6
i.i.d.
∼ G =

J
j=1

πjNp(µj, 6j).

The mean-zero constraint

E(y) =

J
j=1

πjµj = 0p, (1)

which can be written as

[π′
⊗ Ip]Vec(µ) = 0p,

forces Vec(µ) = (µ′

1, . . . ,µ
′

J)
′ to live in a (J − 1) × p-dimensional hyperplane in RJ×p. Let θj = πjµj and θ = (π1µ1,

. . . , πJµJ)
′. The constraint (1) is satisfied when 1′

Jθ = 0where 1J is a vector of J ones. Define

θ = MJ×(J−1)Z(J−1)×p =

m1
...
mJ


 z′

1
...

z′

J−1

 (2)

where

z1, . . . , zJ−1|�
ind.
∼ Np(0, �)

and mj’s are 1 × (J − 1) vectors. Note that from Eq. (2), we have θj = (mjZ)′. The columns of matrix M, of dimension
J × (J − 1), span the space orthogonal to the vector of all ones 1J , C(1J). That is, C(M) = C(1J)

⊥, e.g. mjj = −1, mj+1,j = 1
for j = 1, . . . , J − 1, and zeros elsewhere. Note then 1′

Jθ = 01×p a.s., i.e. E(y) = 0. To make this discrete mixture completely
analogous to the continuousmixture thatmotivated it, letMbe thedifferencematrix abovebutwith twoadditional columns:
on the very left a column of zeros except the first element is 1, and on the right a column of zeros except the last element is
−1; then augment the {zj}

J−1
j=1 with any z0 = zJ .

Let si = j if yi comes from component j and define s = (s1, . . . , sn)′. The data model conditional on the s = (s1, . . . , sn)′
is

yi|Z, 6, s
ind.
∼ Np


π−1
si (msiZ)

′, 6si


, P(si = j) = πj.

The full conditional for Z is proportional to

p(Z|else) ∝

J−1
j=1

exp

−0.5z′

j�
−1zj

 n
i=1

exp

−0.5


yi − π−1

si (msiZ)
′
′

6−1
si


yi − π−1

si (msiZ)
′


.
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