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a b s t r a c t

The mean-of-order-p (MOp) extreme value index (EVI) estimators are based on Hölder’s
mean of an adequate set of statistics, and generalize the classical Hill EVI-estimators,
associated with p = 0. Such a class of estimators, dependent on the tuning parameter
p ∈ R, has revealed to be highly flexible, but it is not invariant for changes in location. To
make theMOp location-invariant, it is thus sensible to use the peaks over a random threshold
(PORT) methodology, based upon the excesses over an adequate ascending order statistic.
In this article, apart from an asymptotic comparison at optimal levels of the optimal MOp
class and some competitive EVI-estimators, like a Pareto probability weighted moments
EVI-estimator, a few details on PORT classes of EVI-estimators are provided, enhancing
their high efficiency both asymptotically and for finite samples.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Given a sample of n random variables (RVs), Xn := (X1, . . . , Xn), either independent, identically distributed or possible
weakly dependent and stationary from a cumulative distribution function (CDF) F , let us denote by X1:n ≤ · · · ≤ Xn:n
the associated ascending order statistics. Let us further assume that there exist sequences of real constants, {an > 0} and
{bn ∈ R} such that the maximum, linearly normalized, i.e. (Xn:n − bn) /an, converges in distribution to a non-degenerate
RV. Then, the limiting CDF is compulsory of the type of an extreme value (EV) CDF, dependent upon a generalized shape
parameter ξ ∈ R, and with the functional form

EVξ (x) =

exp(−(1+ ξx)−1/ξ ), 1+ ξx > 0 if ξ ≠ 0,
exp(− exp(−x)), x ∈ R if ξ = 0. (1.1)

It is then said that F belongs to the max-domain of attraction of EVξ , in (1.1), and the notation F ∈ DM


EVξ


is commonly

used in the field of extreme value theory (EVT). The parameter ξ , the so-called extreme value index (EVI), is the primary
parameter of extreme events. The EVI measures the heaviness of the right tail-function (RTF), F(x) := 1 − F(x), and the
heavier the right-tail the larger the EVI is. For Paretian-type RTFs (ξ > 0), i.e. the often called heavy RTFs, the most popular
EVI-estimator is the Hill (H) EVI-estimator (Hill, 1975), the average of the k log-excesses,

Vik := ln Xn−i+1:n − ln Xn−k:n, 1 ≤ i ≤ k < n,
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being thus the logarithm of the geometric mean (or mean-of-order-0) of

Uik := Xn−i+1:n/Xn−k:n, 1 ≤ i ≤ k < n, (1.2)

i.e.

ξ̂H
k = ξ̂H

k (Xn) :=
1
k

k
i=1

Vik = ln


k

i=1

Xn−i+1:n

Xn−k:n

1/k

. (1.3)

Brilhante et al. (2013) considered as basic statistics the mean-of-order-p (MOp) of Uik, in (1.2), for p ≥ 0. More generally,
Gomes and Caeiro (2014) considered the same statistics for p ∈ R, i.e.

Mp(k) =




1
k

k
i=1

Up
ik

1/p

if p ≠ 0,
k

i=1

Uik

1/k

if p = 0,

and, with ξ̂
H0
k ≡ ξ̂H

k , defined in (1.3), the class of MOp EVI-estimators,

ξ̂
Hp
k = ξ̂

Hp
k (Xn) :=



1−M−pp (k)


/p if p < 1/ξ,

lnM0(k) = ξ̂H
k if p = 0.

(1.4)

The class of MOp EVI-estimators in (1.4) depends on the tuning parameter p ∈ R, it is highly flexible, it is scale-invariant
but it is not invariant for changes in location, a property enjoyed by the EVI itself. To make the MOp EVI-estimators in (1.4)
location-invariant, it is sensible to use the peaks over a random threshold (PORT) methodology, introduced in Araújo-Santos
et al. (2006), and further computationally studied in Gomes et al. (2008a). The PORT methodology is based on the sample of
excesses over the random threshold Xnq:n, 0 ≤ q < 1, nq := ⌊nq⌋ + 1, where ⌊x⌋ denotes the integer part of x, i.e. it is based
on the sample of size n(q)

= n− nq,

X(q)
n :=


Xn:n − Xnq:n, . . . , Xnq+1:n − Xnq:n


. (1.5)

The PORT-MOp EVI-estimators are thus estimators with the same functional form of the EVI-estimators in (1.4), but with
the original sample Xn replaced by the sample of excesses X(q)

n , in (1.5). Consequently, the PORT-MOp EVI-estimators are

given by ξ̂
H(q)
p

k := ξ̂
Hp
k (X(q)

n ).

Remark 1.1. We can have q = 0whenever F(·) has a finite left endpoint (the random level can then be theminimum). Note
that the choice q = 0 is appealing in practice, but should be used with care. Such a random threshold can indeed lead to
under-estimation and even inconsistency (see, for instance Gomes et al., 2008a). Generally, we can have 0 < q < 1 (the
random level is then an empirical quantile).

As a measure of comparison, the recent and promising Pareto probability weighted moments (PPWM) (see Caeiro and
Gomes, 2011; Caeiro et al., 2014) will be considered. The PPWM EVI-estimators are consistent for ξ < 1, depend on the
statistics,

â0(k) :=
1
k

k
i=1

Xn−i+1:n, â1(k) :=
1
k

k
i=1

i− 1
k− 1

Xn−i+1:n,

and are defined by

ξ̂ PPWM
k = 1−

â1(k)
â0(k)− â1(k)

, 1 ≤ k < n. (1.6)

PORT-PPWM EVI-estimators (see Caeiro et al., 2016) will also be included in the comparative studies to be developed in
this article. In Section 2 a few details on second-order frameworks in EVT, reduced-bias estimation and asymptotic behavior
of the estimators will be provided. Section 3 is dedicated to the finite sample properties of the EVI-estimators under study
as well as their PORT-versions, done through a large-scale simulation study. Section 4 is devoted to a few final comments
on the advantages of PORT EVI-estimators and on possible choices of the vector of tuning parameters.

2. Second-order frameworks for heavy RTFs, reduced-bias and PORT EVI-estimation

Let us consider for the reciprocal right tail quantile function (RTQF) associated with F , the notation U(t) := F←(1− 1/t),
with F←(y) := inf{x : F(x) ≥ y}. For heavy right-tails, it is usual to work under the validity of a first-order condition
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