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a b s t r a c t

By incorporating the Expectation–maximization (EM) algorithm into composite asymmet-
ric Laplace distribution (CALD), an iterative weighted least square estimator for the lin-
ear composite quantile regression (CQR) models is derived. Two selection methods for the
number of composite quantiles via redefined AIC and BIC are developed. Finally, the pro-
posed procedures are illustrated by some simulations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Regression models are commonly estimated by traditional least square estimation (LSE). However, LSE is expected to
be sensitive to outliers and becomes less efficient when data is non-normal. As an alternative, quantile regression (QR)
introduced by Koenker and Bassett (1978) has become an appealing statistical tool in modern regression analysis as well as
numerous practical applications such as finance, medicine and environment.

However, Zou and Yuan (2008) showed that QR can lead to an arbitrarily small relative efficiency compared to LSE, and
they proposed CQR estimationwhich combines information ofmultiple quantiles together to construct a robust and efficient
estimation. They indicated that CQR could be much more efficient than LSE. In the context of regression analysis, CQR can
provide more robust estimation results for non-normal error distributions than traditional mean regression, even than
median regression. Kai et al. (2010) studied local polynomial CQR for nonparametric regression. Kai et al. (2011) conducted
CQR estimation and variable selection for semiparametric varying coefficient partially linear models. Jiang et al. (2012)
investigated variable selection for nonlinear models via CQR. For more applications of CQR, see Jiang and Qian (2013), Jiang
et al. (2014), Jiang and Li (2014), Chen et al. (2015) and Yang et al. (2015). However, it should bementioned that the objective
function to be optimized in CQR is a weighted combination of a sequence of convex functions, which makes the estimation
challenging. No closed form of parameter estimators can be derived. Few literatures discussed the optimization for CQR
from the viewpoint of computation. Furthermore, dealing with CQR based on likelihood methods is a promising point.
To the best of our knowledge, likelihood-based approaches for CQR have not been considered in the literature. Therefore,
we propose a likelihood-based method for CQR in this paper. Specially, by introducing the CALD, we study the maximum
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likelihood estimation (MLE) for linear CQRmodels. Based on the EM algorithm, an iterative weighted least square estimator
of regression coefficient is obtained. Detailed discussion can be found in Section 3.

The remainder of this paper is organized as follows. In Section 2, we provide preliminary introduction for QR and CQR. In
Section 3, we discuss the MLE for linear CQR and employ the EM algorithm to obtain an iterative closed form for parameter
estimators. In Section 4, twomodel selection criteria are used to select a proper number of composite quantiles. In Section 5,
simulation studies are conducted to illustrate the finite sample performance of the proposedmethod. Section 6 draws some
conclusions.

2. Preliminary description

2.1. The QR

Consider the common linear regression model

yi = xTi β + εi, i = 1, . . . , n (1)

where yi is the ith observation, xi = (xi1, xi2, . . . , xip)T , β = (β1, β2, . . . , βp)
T and εi is the error term.

Based on QR in Koenker and Bassett (1978), the τ th quantile estimator of regression coefficient β can be obtained as
follows

argmin
β

n
i=1

ρτ (yi − xTi β), (2)

where ρτ (u) = u(τ − I(u < 0)) is the quantile check function. From Yu andMoyeed (2001), minimizing the above objective
loss function is equivalent to maximizing the likelihood under the asymmetric Laplace distribution (ALD) errors. Probability
density function (pdf) of ALD is

f (y|µ, σ , τ) =
τ(1 − τ)

σ
exp


−ρτ


y − µ

σ


, (3)

where µ is the location, σ is the scale, and 0 < τ < 1 is the skewness.
Yu andMoyeed (2001) argued that empirical results are robust by forcing the ALD on errors even if it is amisspecification

of the true errors. Additionally, based on the mixture representation of ALD developed by Reed and Yu (2009) and Kozumi
and Kobayashi (2011), model (1) can be equivalently rewritten as

yi = xTi β + θ1υ +


θ2συi · ei, i = 1, 2, . . . , n, (4)

where θ1 =
1−2τ
τ(1−τ) , θ2 =

2
τ(1−τ) , υi ∼ Exp( 1

σ
), ei ∼ N(0, 1), υi and ei are independent of each other. Representation (4)

has been frequently utilized in Bayesian QR papers such as Reich et al. (2011), Kobayashi and Kozumi (2013), Zhao and Lian
(2015) and EM algorithm QR papers such as Tian et al. (2014) and Zhou et al. (2014).

2.2. The CQR

Let Q be a set of quantiles of interest, Q = {τk, 0 < τ1 < · · · < τK < 1}. The CQR estimators of β can be obtained as
follows

(α̂1, . . . , α̂K , β̂
CQR) = arg min

α1,...,αK ,β

n
i=1

K
k=1

ρτk(yi − xTi β − αk), (5)

where αk’s are the τkth quantiles of εi which satisfy: α1 < · · · < αK . To ensure the identifiability of β , we further assume
that

K
k=1 αk = 0. Generally, one can set τk =

k
K+1 , k = 1, . . . , K , where K is the number of quantiles level. It should be

noted that (5) is a combination of a series of objective functions for QR under several quantiles, and median regression is a
special case for K = 1.

We mention that objective function (5) is a combination of a sequence of convex functions, which makes the estimation
complicated. We cannot obtain closed form of parameter estimators by directly differentiating the objective function. Few
papers discussed the optimization for CQR from the viewpoint of computation. Based on Bayesian statistics, Tian et al.
(submitted for publication) introduced the CALD to conduct CQR for model (1). However, in Bayesian literatures, statistical
inference is heavily dependent on the well-known Bayesian factor. Bayesian factor suffers from various theoretical and
computational difficulties. For example, it cannot be defined under improper prior distributions, see, e.g., Li and Yu (2012).
In the following sections, we will address CQR problem via the popular EM algorithm.
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