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a b s t r a c t

We consider the problem of estimating a function in a deconvolutionmodel with fractional
Gaussian noise. We derive minimax lower and upper bounds to show that our estimator
attains optimal or near optimal rates. Such rates are affected by LRD.
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1. Introduction

Consider the problem of estimating a periodic function f (t) with t ∈ [0, 1], based on observations from the noisy
convolution

Y (t) =

 1

0
f (s)g(t − s)ds + εαZH(t), t ∈ [0, 1]. (1.1)

Here, the function g(·) is known and ZH(t) is a fractional Gaussian noise, i.e., a Gaussian process with covariance function

E

ZH(t1)ZH(t2)


= 1/2


|t1|2H + |t2|2H − |t1 − t2|2H


where α = 2 − 2H ∈ (0, 1] is the level of long-range dependence and H is Hurst parameter.

Deconvolutionmodel has been the subject of a great deal of papers since late 1980s, but themost significant contribution
was that of Donoho (1995)whowas the first to devise awavelet solution to the problem. In these attempts, it is assumed that
errors are i.i.d. Gaussian random variables. However, empirical evidence has shown that even at large lags, the correlation
structure in the errors can decay at a hyperbolic rate. To account for this, quite a few papers on long-range dependence (LRD)
in general have been developed.

In the deconvolution model, Wishart (2013) extends the idea of Kulik and Raimondo (2009) to establish equivalence
between a deconvolution model with fractional Brownian motion (fBm) and another deconvolution model with white
noise. Wang (1997) studies similar problem but for a more general noisy linear transformation when the noise is fBm.
In a multichannel functional deconvolution model, Benhaddou et al. (2014) consider the model under LRD errors setting
without specifying the form of LRD but under the assumption that error structure satisfies certain conditions. Kulik et al.
(2015) investigate a multichannel deconvolution model with LRD errors in the Lp-risk.
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The objective of this paper is to investigate the deconvolutionmodel from theminimax point of view under the fractional
Gaussian noise (fGn) error structure. The motives behind working the problem with fGn error structure stem from the
fact that under such setting, the minimax results are sharper than under other forms of LRD. Following Wishart approach,
Wavelet-Vaguelette-Decomposition (WVD) via bounded bandwidth wavelets is performed to de-correlate fGn. The lower
bounds are to be constructed in the L2-risk for both regular-smooth and super-smooth convolutions to be complemented
by the upper bounds. In addition, we propose an adaptive estimator and show that it is asymptotically optimal or near-
optimal, in a wide range of Besov balls. It is also shown that, under the regular-smooth convolution, the convergence rates
are affected by long memory. In particular, the rates deteriorate as the dependence gets more severe (the Hurst parameter
increases).

The rest of the paper is organized as follows. In Section 2, we describe the construction of the wavelet estimator for
f (t). In Section 3, we derive minimax lower bounds for the L2-risk when f (t) is assumed to belong to a Besov ball and
g(t) possesses some smoothness properties. In Section 4, we demonstrate that our estimator is asymptotically optimal or
near-optimal within a logarithmic factor. Finally, Section 5 contains the proofs of the theoretical results.

2. Estimation algorithm

In what follows, ⟨·, ·⟩ denotes the inner product in the Hilbert space L2 ([0, 1]) (the space of squared-integrable functions
defined on the unit interval [0, 1]), i.e., ⟨f , g⟩ =

 1
0 f (t)g(t)dt for f , g ∈ L2 ([0, 1]). We also denote the complex conjugate

of a by a. Let em(t) = ei2πmt be a Fourier basis on the interval [0, 1]. Let Ym = ⟨em, Y ⟩ , ZH
m =


em, ZH


, gm = ⟨em, g⟩ and

fm = ⟨em, f ⟩ be Fourier coefficients of the functions Y , ZH , g and f respectively. Then, applying the Fourier transform to Eq.
(1.1), one obtains

Ym = gmfm + εαZH
m . (2.2)

Consider a bounded bandwidth periodized wavelet basis (e.g., Meyer-type) ψj,k(t). Let m0 be the lowest resolution level
for the wavelet basis and denote the scaling function for the bounded bandwidth wavelet by ψm0−1,k(t). Then, using the
periodized Meyer wavelet basis described above, any periodic function f (t) ∈ L2 ([0, 1]) can be expanded into a wavelet
series as

f (t) =

∞
j=m0−1

2j−1
k=0

βj,kψj,k(t) (2.3)

where βj,k =

f , ψj,k(t)


. Notice that expansion (2.3) is valid under condition (3.12) in that it guarantees the existence of an

isometry between the space of squared-integrable functions and the space of summable sequences. Ifψj,k,m =

em, ψj,k


are

Fourier coefficients of ψj,k(t), then Plancherel’s formula and (2.2) yield the unbiased estimator

β̃j,k =


m∈Wj

Ym

gm
ψ j,k,m (2.4)

where, for any j ≥ m0,

Wj =

m : ψj,k,m ≠ 0


⊆ 2π/3


−2j+2,−2j

∪

2j, 2j+2 , (2.5)

due to the fact that Meyer wavelets are bandlimited (see, e.g., Johnstone et al., 2004, Section 3.1). We now construct a hard
thresholding estimator of f (t) as

fε(t) =

J−1
j=m0−1

2j−1
k=0

β̃j,kI

|β̃j,k| > λαjε


ψj,k(t), (2.6)

and the values of J,m0 and λαjε will be defined later. We assume that the function g(t) satisfies the following condition.

Assumption 1. Assume that the Fourier coefficients gm of the function g(t), for some positive constants ν1, ν2, β, C1 and
C2, and a1, a2 ≥ 0, independent of m, are such that

C1|m|
−2ν1 exp{−2a1|m|

β
} ≤ |gm|

2
≤ C2|m|

−2ν2 exp{−2a2|m|
β
} (2.7)

where either a1a2 > 0 or a1 = a2 = 0 and ν1 = ν2 = ν > 0. Eq. (1.1) is referred to as the regular-smooth convolution
when a1 = a2 = 0, and super-smooth convolution when a1a2 > 0.

To determine the choices of J,m0 and λαjε in (2.6), it is necessary to evaluate the variance of (2.4).
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