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a b s t r a c t

We propose the penalized estimator with the smoothly clipped absolute deviation (SCAD)
penalty for varying coefficient time series models, which in autoregressivemodels actually
performs lag order selection. Theoretical properties are established. Some numerical
examples are also presented.
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1. Introduction

In an effort to address the model misspecification issues associated with parametric models, more flexible nonlinear
and non-/semi-parametric models have been used for both independent and time series data. For example, Stone (1986)
considered the additive model. Hastie and Tibshirani (1993) studied the varying coefficient model. Li (2000) and Ahmad
et al. (2005) considered the partially linear additive model and partially linear varying coefficient model respectively, for
independent data. For time series, see Fan and Yao (2003) for an excellent review.

This article adopts a similar context as Cai et al. (2000), which considered varying coefficient models for stationary time
series data under α-mixing conditions. Cai et al. (2000) motivated varying coefficient model for time series data by the lynx
data which concerns the annual fur returns of lynx at auction in 1821–1934. For this data, Tong (1990) fitted the threshold
autoregressive model with two regimes where different autoregressive models are obtained depending on the value of the
delay variable at lag 2. Since the threshold model can be regarded as a simplification of the varying behavior into two state,
Cai et al. (2000) considered fitting the varying coefficient autoregressivemodel xt = β1(xt−2)xt−1 +β2(xt−2)xt−2 +ϵt where
now β1 and β2 are functions that reflect the smooth changing behavior when the population increases or decreases.

Different from Cai et al. (2000) which used kernel estimation methods for estimating the time-varying coefficients, here
we use series estimationmethods, in particular B-splines, andwe also consider penalized variable selection for thismodel. In
the semiparametric time series literaturewithα-mixing sequences, series estimationmethods have so far received relatively
little attention in developing its asymptotic properties. One contribution of this article is to fill this gap. Series estimation
methods, in particular polynomial splines, for nonparametric models have been used often in statistics/econometrics, for
example in Stone (1986); Andrews (1991); Andrews andWhang (1990); Chen (2007); Donald and Newey (1994) and Newey
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(1997). Some advantages of series estimation methods were mentioned in Li (2000) including its computational efficiency.
A notable disadvantage is that asymptotic normality of the nonparametric components is difficult to establish.

For the special case of varying coefficient autoregressive models for example, an important problem is to determine the
lag order (order 2 used in the lynx data), which is a challenging problem in this area. In recent years, variable selection based
on regularization methods has attracted a lot of interest (Tibshirani, 1996; Fan and Li, 2001; Zou, 2006; Yuan and Lin, 2006;
Zou and Li, 2008). Extensions of the regularization framework to varying coefficient models include Wang et al. (2008);
Wang and Xia (2009) and Li and Liang (2008), all for independent data. Wewill study variable selection problem for varying
coefficient times series model. In the autoregressivemodels, this actually has the effect of lag order selection when an initial
sufficiently large order is specified.

The rest of the paper is organized as follows. In Section 2, we formally present the varying coefficient model, the estima-
tion procedure, and the statistical properties.We show the nonparametric oracle property of the penalized estimator. As de-
fined in Storlie et al. (2011), nonparametric oracle propertymeans that we can consistently identify the nonzero coefficients
and the convergence rate of the estimator is the same as when the zero coefficients are known a priori. We then discuss the
computational approach adopted. In Section 3, we present some numerical results for finite sample performance. Section 4
contains some concluding remarks. All technical proofs are relegated to the Supplementary material (see Appendix A).

2. Estimation method and asymptotic property

2.1. Spline estimation of varying coefficient models

Let (Xi,Ui, Yi) be jointly strictly stationary processes. We consider the varying coefficient model given by

Yi = XT
i β(Ui) + ϵi,

where Xi = (Xi1, . . . , Xip)
T is p-dimensional, and E[ϵi|Xi,Ui] = 0, and Ui is called the smoothing variable, which might

or might not be one component of Xi. We only consider one-dimensional smoothing variable Ui ∈ R. Although multi-
dimensional Ui can possibly be accommodated, in practice this is rare due to the worry of curse of dimensionality in high
dimensional nonparametric regression. We assume the smoothing variable Ui takes values in a bounded interval [−T , T ],
which is typical in series estimation methods. Although our approach works for general series estimation methods under
mild assumptions, for specificity and ease of presentation, we only consider polynomial splines in the following.

Let ξ0 = −T < ξ1 < · · · < ξK ′ < T = ξK ′+1 partition [−T , T ] into subintervals [ξk, ξk+1), k = 0, . . . , K ′ with K ′

internal knots. We only restrict our attention to equally spaced knots although data-driven choice can be considered such as
using the quantiles of {Ui}. A polynomial spline of order d′ is a function whose restriction to each subinterval is polynomial
of degree d′

−1 and globally d′
−2 times continuously differentiable. The collection of splines with a fixed sequence of knots

has a normalized B-spline basis {B1(u), . . . , BK (u)} with K = K ′
+ d′.

Suppose each coefficient βj(u) can be approximated by an expansion βj(u) ≈
K

k=1 bjkBk(u). Although in principle
different coefficients might be approximated by splines with a different number of knots, in practice it is hard to choose
many knots sequences simultaneously and thus for simplicity we assume the same basis is used for different coefficients.

We consider the least squares criterion

Q (b) =
1
n

n
i=1


Yi −

p
j=1

K
k=1

XijBk(Ui)bjk

2

.

Let b = (bT
1, . . . , b

T
p1)

T
= (b11, . . . , bp1K )T , Zi = (Xi1B1(Ui), Xi1BK (Ui), . . . , Xip1BK (Ui))

T , Z = (Z1, . . . , Zn)
T , Y =

(Y1, . . . , Yn)
T , we can rewrite the criterion as

Q (b) =
1
n
∥Y − Zb∥

2. (1)

Denoting the minimizer by b̂, we estimate βj(u) by

β̂j(u) =

K
k=1

b̂jkBk(u).

We impose the following assumptions in studying the statistical properties of the estimators, although we do not claim
these conditions are the weakest possible.

(A1) The smoothing variable Ui has a bounded density supported on [−T , T ].
(A2) The eigenvalues of the matrix E(XiXT

i |Ui = u) are bounded away from 0 and infinity, uniformly in u.
(A3) The conditional density of (U1,Ul+1) given (X1,Xl+1) is uniformly bounded on the support of (X1,Xl+1). The

conditional density of U1 given X1 is uniformly bounded on the support of X1.
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