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a b s t r a c t

We provide a new bivariate distribution with beta marginal distributions, positive proba-
bility over the unit square, and correlations over the full range. We discuss its extension to
three or more dimensions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The univariate beta distribution and its bivariate extension are basic distributions that have been used to model data in
various fields. For example, in population genetics, Wright (1937) showed that the beta distribution arises from a diffusion
equation describing allele frequencies in finite populations, and thus the beta distribution is used to model proportions of
alleles at a specific locus. By extension, a bivariate beta distribution may be appropriate to model proportions of alleles
in evolutionary-related loci that are in linkage disequilibrium (Gianola et al., 2012). Bivariate beta distributions have also
been used to model drought duration and drought intensity in climate science (Nadarajah, 2007), the proportions of dis-
eased second premolars and molars in dentistry (Bibby and Væth, 2011), tree diameter and height in forestry (Hafley and
Schreuder, 1977; Li et al., 2002; Wang and Rennolls, 2007), soil strength parameters (‘cohesion’ and ‘coefficient of friction’)
in civil engineering (A-Grivas and Asaoka, 1982), retinal image recognition measurements in biometry (Adell et al., 2012),
decision maker utilities in multi-attribute utility assessment (Libby and Novick, 1982), and joint readership of two monthly
magazines (see second example in Danaher and Hardie (2005)).

A second role for the bivariate beta distribution is that of a prior for two correlated proportions. Xie et al. (2013) elicited a
bivariate beta distribution from experts to serve as a prior distribution in the analysis of clinical trial data; and Oleson (2010)
used a bivariate beta distribution as a prior distribution to correlated proportions when analyzing single-patient trials.

The well known Dirichlet density is a multivariate generalization of the beta distribution, but it is restricted to a lower
dimensional simplex. Thus it is not an appropriate model for examples such as the above. Instead, we seek a bivariate distri-
bution with a positive probability on the unit square (0, 1)2, beta marginal distributions, and correlation over the full range.

Balakrishnan et al. (2008) and Nelsen (2006) discuss an array of techniques for constructing continuous bivariate
distributions. We selectively outline some, to contextualize relevant literature.
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1.1. General families

First, one can use general families of bivariate distributions that separate the bivariate structure from the marginal
distributions. Examples are the Farlie–Gumbel–Morgenstern, Plackett,Mardia, and Sarmanov families. For a fuller discussion
of these and other families see Joe (1997), Kotz et al. (2000), or Balakrishnan et al. (2008).

1.2. Variable-in-common and transformation-based constructions

An alternative is explicated by Libby and Novick (1982), who construct a multivariate generalized beta distribution
starting from independent gamma variates G0,G1,G2, with parameters α0 and β0, α1 and β1, and α2 and β2 respectively.
Then the joint density of

X = G1/(G1 + G0), Y = G2/(G2 + G0) (1.1)

is a generalized beta distribution with density

f (x, y) =
1

B(α0, α1, α2)

λ
α1
1 xα1−1(1 − x)−(α1+1) λ

α2
2 yα2−1(1 − y)−(α2+1)

1 + λ1x/(1 − x) + λ2y/(1 − y)
α0+α1+α2

, (1.2)

for 0 < x, y < 1; αi, βi, > 0 for i = 0, 1, 2, and λi = βi/β0 for i = 1, 2. In (1.2) B(α1, . . . , αk) =


Γ (αi)/Γ (


αi) is the
generalized beta function. When λi = 1, the density (1.2) reduces to a bivariate beta distribution with three, rather than
five parameters:

f (x, y) =
1

B(α0, α1, α2)

xα1−1(1 − x)α0+α2−1yα2−1(1 − y)α0+α1−1

(1 − xy)α0+α1+α2
. (1.3)

Jones (2002) obtains the density (1.3) starting from a multivariate F distribution. Olkin and Liu (2003) obtain it indepen-
dently using a multiplicative or logarithmically additive construction scheme analogous to that in (1.1). It is obvious from
the construction (1.1) that X and Y have a positive correlation in [0, 1]. In fact, Olkin and Liu (2003) note that the stronger
property of positive quadrant dependence holds for (1.3), so that the probability that the bivariate random variables are
simultaneously large (small) is at least as large as if they were independent.

In addition, Nadarajah and Kotz (2005) note that if U, V ,W are beta random variates with special relations among the
parameters, then (X = UW , Y = U) and (X = UW , Y = VW ) will have a bivariate beta distribution.

Finally, Arnold and Ng (2011) construct a flexible family of bivariate beta distributions starting from five independent
gamma variates G1 through G5, with positive shape parameters α1 through α5, respectively, and common scale parameter
1. They define the pair X, Y

X =
G1 + G3

G1 + G3 + G4 + G5
, Y =

G2 + G4

G2 + G3 + G4 + G5
, (1.4)

which has a density with beta distribution marginals. The joint density of (X, Y ) from construction (1.4) does not have
a closed form and must be calculated numerically. It contains the distribution in (1.3) as a special case, namely when
α3 = α4 = 0. Contrary to the other constructions, it allows correlations throughout the full range. However its extension to
three or more dimensions is cumbersome.

1.3. Generalization of existing bivariate beta densities

Nadarajah (2007) provides a slight modification to (1.3), in which the denominator (1 − xy)α0+α1+α2 becomes (1 −

xyδ)α0+α1+α2 . In the worked example the estimate of δ was close to 1, suggesting that this parameter had a small effect in
fitting the density.

1.4. Constructions based on order statistics

Another construction may be via order statistics. If X(1) ≤ · · · ≤ X(n) are the order statistics from a uniform distribution
on [0, 1] then the distribution of a spacing

wrs = X(s) − X(r), s ≥ r,

has a beta distribution,

f (wrs) =
wd−1

rs (1 − wrs)
n−d

B(d, n − d)
, d = s − r.

This suggests that the joint distribution ofwrs andwts is a bivariate beta distribution.Wehave not followed this line of inquiry
but note only that it may lead to some novel results. For further discussion of order statistics see David and Nagaraja (2003).
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